{"title":"Navigation using carrier Doppler shift from a LEO constellation: TRANSIT on steroids","authors":"Mark L. Psiaki","doi":"10.1002/navi.438","DOIUrl":null,"url":null,"abstract":"A new global navigation concept is studied that relies on carrier Doppler shift measurements from a large LEO constellation. This system could provide an alternative to pseudorange-based GNSS. The concept uses a high-fidelity model of received carrier Doppler shift. This model is used in a point-solution batch filter that simultaneously estimates eight unknowns: the three position vector components, receiver clock offset, three velocity vector components, and receiver clock offset rate. The filter uses eight or more measured Doppler shifts in its least-squares fit. A generalized Geometric Dilution of Precision (GDOP) analysis indicates that absolute position accuracies on the order of 1-5 meters and absolute velocity accuracies on the order of 0.01 m/sec to 0.05 m/sec may be achievable if the range-rate precision of the Doppler shift measurements is 0.01 m/sec. These accuracies are comparable to current pseudorange-based GNSS. Clock offset accuracy is on the order of 0.0001 to 0.0010 sec 1-<img alt=\"urn:x-wiley:00281522:media:navi438:navi438-math-0001\" loading=\"lazy\" src=\"/cms/asset/97ccb1ba-7112-4b1a-973e-100e3b1073bd/navi438-math-0001.png\"/>.","PeriodicalId":501157,"journal":{"name":"NAVIGATION","volume":"55 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAVIGATION","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/navi.438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A new global navigation concept is studied that relies on carrier Doppler shift measurements from a large LEO constellation. This system could provide an alternative to pseudorange-based GNSS. The concept uses a high-fidelity model of received carrier Doppler shift. This model is used in a point-solution batch filter that simultaneously estimates eight unknowns: the three position vector components, receiver clock offset, three velocity vector components, and receiver clock offset rate. The filter uses eight or more measured Doppler shifts in its least-squares fit. A generalized Geometric Dilution of Precision (GDOP) analysis indicates that absolute position accuracies on the order of 1-5 meters and absolute velocity accuracies on the order of 0.01 m/sec to 0.05 m/sec may be achievable if the range-rate precision of the Doppler shift measurements is 0.01 m/sec. These accuracies are comparable to current pseudorange-based GNSS. Clock offset accuracy is on the order of 0.0001 to 0.0010 sec 1-.