A particle-filtering framework for integrity risk of GNSS-camera sensor fusion

NAVIGATION Pub Date : 2021-12-15 DOI:10.1002/navi.455
Adyasha Mohanty, Shubh Gupta, Grace Xingxin Gao
{"title":"A particle-filtering framework for integrity risk of GNSS-camera sensor fusion","authors":"Adyasha Mohanty, Shubh Gupta, Grace Xingxin Gao","doi":"10.1002/navi.455","DOIUrl":null,"url":null,"abstract":"Adopting a joint approach toward state estimation and integrity monitoring results in unbiased integrity monitoring unlike traditional approaches. So far, a joint approach was used in particle RAIM (Gupta & Gao, 2019) for GNSS measurements only. In our work, we extend Particle RAIM to a GNSS-camera fused system for joint state estimation and integrity monitoring. To account for vision faults, we derived a probability distribution over position from camera images using map-matching. We formulated a Kullback-Leibler divergence (Kullback & Leibler, 1951) metric to assess the consistency of GNSS and camera measurements and mitigate faults during sensor fusion. Experimental validation on a real-world data set shows that our algorithm produces less than 11 m position error and the integrity risk over bounds the probability of HMI with 0.11 failure rate for an 8 m alert limit in an urban scenario.","PeriodicalId":501157,"journal":{"name":"NAVIGATION","volume":"53 21","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAVIGATION","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/navi.455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Adopting a joint approach toward state estimation and integrity monitoring results in unbiased integrity monitoring unlike traditional approaches. So far, a joint approach was used in particle RAIM (Gupta & Gao, 2019) for GNSS measurements only. In our work, we extend Particle RAIM to a GNSS-camera fused system for joint state estimation and integrity monitoring. To account for vision faults, we derived a probability distribution over position from camera images using map-matching. We formulated a Kullback-Leibler divergence (Kullback & Leibler, 1951) metric to assess the consistency of GNSS and camera measurements and mitigate faults during sensor fusion. Experimental validation on a real-world data set shows that our algorithm produces less than 11 m position error and the integrity risk over bounds the probability of HMI with 0.11 failure rate for an 8 m alert limit in an urban scenario.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
gnss -相机传感器融合完整性风险的粒子滤波框架
采用状态估计和完整性监测相结合的方法可以实现与传统方法不同的无偏完整性监测。到目前为止,联合方法用于粒子ram (Gupta &Gao, 2019),仅用于GNSS测量。在我们的工作中,我们将Particle RAIM扩展到GNSS-camera融合系统,用于联合状态估计和完整性监测。为了解释视觉缺陷,我们使用地图匹配从相机图像中导出了位置上的概率分布。我们提出了Kullback- leibler散度(Kullback &Leibler, 1951)度量,用于评估GNSS和相机测量的一致性,并减轻传感器融合过程中的故障。在现实世界数据集上的实验验证表明,我们的算法产生的位置误差小于11米,并且在城市场景中,对于8米警报限制,我们的算法的完整性风险超过了HMI的概率,故障率为0.11。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting Slowly Accumulating Faults Using a Bank of Cumulative Innovations Monitors in Kalman Filters Improved Automatic Detection of GPS Satellite Oscillator Anomaly using a Machine Learning Algorithm Multi-Epoch 3D-Mapping-Aided Positioning using Bayesian Filtering Techniques Navigator Notes Study of structures of the sporadic E layer by using dense GNSS network observations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1