Deep learning approaches in flow visualization

IF 2.9 3区 工程技术 Q2 ENGINEERING, MECHANICAL Advances in Aerodynamics Pub Date : 2022-04-14 DOI:10.1186/s42774-022-00113-1
Liu, Can, Jiang, Ruike, Wei, Datong, Yang, Changhe, Li, Yanda, Wang, Fang, Yuan, Xiaoru
{"title":"Deep learning approaches in flow visualization","authors":"Liu, Can, Jiang, Ruike, Wei, Datong, Yang, Changhe, Li, Yanda, Wang, Fang, Yuan, Xiaoru","doi":"10.1186/s42774-022-00113-1","DOIUrl":null,"url":null,"abstract":"With the development of deep learning (DL) techniques, many tasks in flow visualization that used to rely on complex analysis algorithms now can be replaced by DL methods. We reviewed the approaches to deep learning technology in flow visualization and discussed the technical benefits of these approaches. We also analyzed the prospects of the development of flow visualization with the help of deep learning.","PeriodicalId":33737,"journal":{"name":"Advances in Aerodynamics","volume":"113 5-6","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2022-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Aerodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s42774-022-00113-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 9

Abstract

With the development of deep learning (DL) techniques, many tasks in flow visualization that used to rely on complex analysis algorithms now can be replaced by DL methods. We reviewed the approaches to deep learning technology in flow visualization and discussed the technical benefits of these approaches. We also analyzed the prospects of the development of flow visualization with the help of deep learning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
流可视化中的深度学习方法
随着深度学习技术的发展,流可视化中许多依赖于复杂分析算法的任务现在可以被深度学习方法所取代。我们回顾了流可视化中深度学习技术的方法,并讨论了这些方法的技术优势。我们还分析了流可视化在深度学习的帮助下的发展前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.50
自引率
4.30%
发文量
35
审稿时长
11 weeks
期刊最新文献
Multiscale simulation of rarefied gas dynamics via direct intermittent GSIS-DSMC coupling On the effects of non-zero yaw on leading-edge tubercled wings Wind-resistant design theory and safety guarantee for large oil and gas storage tanks in coastal areas Open-jet facility for bio-inspired micro-air-vehicle flight experiment at low speed and high turbulence intensity Numerical simulation and analysis of a ducted-fan drone hovering in confined environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1