Suzhen Wu, Zhanhong Tu, Yuxuan Zhou, Zuocheng Wang, Zhirong Shen, Wei Chen, Wei Wang, Weichun Wang, Bo Mao
{"title":"FASTSync: a FAST Delta Sync Scheme for Encrypted Cloud Storage in High-Bandwidth Network Environments","authors":"Suzhen Wu, Zhanhong Tu, Yuxuan Zhou, Zuocheng Wang, Zhirong Shen, Wei Chen, Wei Wang, Weichun Wang, Bo Mao","doi":"https://dl.acm.org/doi/10.1145/3607536","DOIUrl":null,"url":null,"abstract":"<p>More and more data are stored in cloud storage which brings two major challenges. First, the modified files in the cloud should be quickly synchronized to ensure data consistency, e.g., delta synchronization (sync) achieves efficient cloud sync by synchronizing only the updated part of the file. Second, the huge data in the cloud needs to be deduplicated and encrypted, e.g., Message-Locked Encryption (MLE) implements data deduplication by encrypting the content among different users. However, when combined, a few updates in the content can cause large sync traffic amplification for both keys and ciphertext in the MLE-based cloud storage, significantly degrading the cloud sync efficiency. A feature-based encryption sync scheme, FeatureSync, is proposed to address the delta amplification problem. However, with further improvement of the network bandwidth, the performance of FeatureSync stagnates. In our preliminary experimental evaluations, we find that the bottleneck of the computational overhead in the high-bandwidth network environments is the main bottleneck in FeatureSync. In this paper, we propose an enhanced feature-based encryption sync scheme FASTSync to optimize the performance of FeatureSync in high-bandwidth network environments. The performance evaluations on a lightweight prototype implementation of FASTSync show that FASTSync reduces the cloud sync time by 70.3% and the encryption time by 37.3% on average, compared with FeatureSync.</p>","PeriodicalId":49113,"journal":{"name":"ACM Transactions on Storage","volume":"46 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Storage","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3607536","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
More and more data are stored in cloud storage which brings two major challenges. First, the modified files in the cloud should be quickly synchronized to ensure data consistency, e.g., delta synchronization (sync) achieves efficient cloud sync by synchronizing only the updated part of the file. Second, the huge data in the cloud needs to be deduplicated and encrypted, e.g., Message-Locked Encryption (MLE) implements data deduplication by encrypting the content among different users. However, when combined, a few updates in the content can cause large sync traffic amplification for both keys and ciphertext in the MLE-based cloud storage, significantly degrading the cloud sync efficiency. A feature-based encryption sync scheme, FeatureSync, is proposed to address the delta amplification problem. However, with further improvement of the network bandwidth, the performance of FeatureSync stagnates. In our preliminary experimental evaluations, we find that the bottleneck of the computational overhead in the high-bandwidth network environments is the main bottleneck in FeatureSync. In this paper, we propose an enhanced feature-based encryption sync scheme FASTSync to optimize the performance of FeatureSync in high-bandwidth network environments. The performance evaluations on a lightweight prototype implementation of FASTSync show that FASTSync reduces the cloud sync time by 70.3% and the encryption time by 37.3% on average, compared with FeatureSync.
期刊介绍:
The ACM Transactions on Storage (TOS) is a new journal with an intent to publish original archival papers in the area of storage and closely related disciplines. Articles that appear in TOS will tend either to present new techniques and concepts or to report novel experiences and experiments with practical systems. Storage is a broad and multidisciplinary area that comprises of network protocols, resource management, data backup, replication, recovery, devices, security, and theory of data coding, densities, and low-power. Potential synergies among these fields are expected to open up new research directions.