LVMT: An Efficient Authenticated Storage for Blockchain

IF 2.1 3区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE ACM Transactions on Storage Pub Date : 2024-05-16 DOI:10.1145/3664818
Chenxing Li, Sidi Mohamed Beillahi, Guang Yang, Ming Wu, Wei Xu, Fan Long
{"title":"LVMT: An Efficient Authenticated Storage for Blockchain","authors":"Chenxing Li, Sidi Mohamed Beillahi, Guang Yang, Ming Wu, Wei Xu, Fan Long","doi":"10.1145/3664818","DOIUrl":null,"url":null,"abstract":"<p>Authenticated storage access is the performance bottleneck of a blockchain, because each access can be amplified to potentially <i>O</i>(log <i>n</i>) disk I/O operations in the standard Merkle Patricia Trie (MPT) storage structure. In this paper, we propose a multi-Layer Versioned Multipoint Trie (LVMT), a novel high-performance blockchain storage with significantly reduced I/O amplifications. LVMT uses the authenticated multipoint evaluation tree (AMT) vector commitment protocol to update commitment proofs in constant time. LVMT adopts a multi-layer design to support unlimited key-value pairs and stores version numbers instead of value hashes to avoid costly elliptic curve multiplication operations. In our experiment, LVMT outperforms the MPT in real Ethereum traces, delivering read and write operations six times faster. It also boosts blockchain system execution throughput by up to 2.7 times.</p>","PeriodicalId":49113,"journal":{"name":"ACM Transactions on Storage","volume":"8 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Storage","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3664818","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Authenticated storage access is the performance bottleneck of a blockchain, because each access can be amplified to potentially O(log n) disk I/O operations in the standard Merkle Patricia Trie (MPT) storage structure. In this paper, we propose a multi-Layer Versioned Multipoint Trie (LVMT), a novel high-performance blockchain storage with significantly reduced I/O amplifications. LVMT uses the authenticated multipoint evaluation tree (AMT) vector commitment protocol to update commitment proofs in constant time. LVMT adopts a multi-layer design to support unlimited key-value pairs and stores version numbers instead of value hashes to avoid costly elliptic curve multiplication operations. In our experiment, LVMT outperforms the MPT in real Ethereum traces, delivering read and write operations six times faster. It also boosts blockchain system execution throughput by up to 2.7 times.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LVMT:区块链的高效认证存储
认证存储访问是区块链的性能瓶颈,因为在标准的 Merkle Patricia Trie(MPT)存储结构中,每次访问都可能被放大到潜在的 O(log n) 磁盘 I/O 操作。在本文中,我们提出了一种多层版本化多点三角形(LVMT),这是一种新型高性能区块链存储,可显著减少 I/O 放大。LVMT 使用认证多点评估树(AMT)向量承诺协议,在恒定时间内更新承诺证明。LVMT 采用多层设计,支持无限键值对,并存储版本号而非值哈希值,以避免昂贵的椭圆曲线乘法运算。在我们的实验中,LVMT 在实际以太坊跟踪中的表现优于 MPT,其读写操作速度是 MPT 的六倍。它还将区块链系统的执行吞吐量提高了 2.7 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Transactions on Storage
ACM Transactions on Storage COMPUTER SCIENCE, HARDWARE & ARCHITECTURE-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
4.20
自引率
5.90%
发文量
33
审稿时长
>12 weeks
期刊介绍: The ACM Transactions on Storage (TOS) is a new journal with an intent to publish original archival papers in the area of storage and closely related disciplines. Articles that appear in TOS will tend either to present new techniques and concepts or to report novel experiences and experiments with practical systems. Storage is a broad and multidisciplinary area that comprises of network protocols, resource management, data backup, replication, recovery, devices, security, and theory of data coding, densities, and low-power. Potential synergies among these fields are expected to open up new research directions.
期刊最新文献
LVMT: An Efficient Authenticated Storage for Blockchain The Design of Fast Delta Encoding for Delta Compression Based Storage Systems A Memory-Disaggregated Radix Tree Fastmove: A Comprehensive Study of On-Chip DMA and its Demonstration for Accelerating Data Movement in NVM-based Storage Systems FSDedup: Feature-Aware and Selective Deduplication for Improving Performance of Encrypted Non-Volatile Main Memory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1