Perseid: A Secondary Indexing Mechanism for LSM-based Storage Systems

IF 2.1 3区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE ACM Transactions on Storage Pub Date : 2023-11-17 DOI:10.1145/3633285
Jing Wang, Youyou Lu, Qing Wang, Yuhao Zhang, Jiwu Shu
{"title":"Perseid: A Secondary Indexing Mechanism for LSM-based Storage Systems","authors":"Jing Wang, Youyou Lu, Qing Wang, Yuhao Zhang, Jiwu Shu","doi":"10.1145/3633285","DOIUrl":null,"url":null,"abstract":"<p>LSM-based storage systems are widely used for superior write performance on block devices. However, they currently fail to efficiently support secondary indexing, since a secondary index query operation usually needs to retrieve multiple small values, which scatter in multiple LSM components. In this work, we revisit secondary indexing in LSM-based storage systems with byte-addressable persistent memory (PM). Existing PM-based indexes are not directly competent for efficient secondary indexing. We propose <span>Perseid</span>, an efficient PM-based secondary indexing mechanism for LSM-based storage systems, which takes into account both characteristics of PM and secondary indexing. <span>Perseid</span> consists of (1) a specifically designed secondary index structure that achieves high-performance insertion and query, (2) a lightweight hybrid PM-DRAM and hash-based validation approach to filter out obsolete values with subtle overhead, and (3) two adapted optimizations on primary table searching issued from secondary indexes to accelerate non-index-only queries. Our evaluation shows that <span>Perseid</span> outperforms existing PM-based indexes by 3-7 × and achieves about two orders of magnitude performance of state-of-the-art LSM-based secondary indexing techniques even if on PM instead of disks.</p>","PeriodicalId":49113,"journal":{"name":"ACM Transactions on Storage","volume":"45 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Storage","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3633285","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

LSM-based storage systems are widely used for superior write performance on block devices. However, they currently fail to efficiently support secondary indexing, since a secondary index query operation usually needs to retrieve multiple small values, which scatter in multiple LSM components. In this work, we revisit secondary indexing in LSM-based storage systems with byte-addressable persistent memory (PM). Existing PM-based indexes are not directly competent for efficient secondary indexing. We propose Perseid, an efficient PM-based secondary indexing mechanism for LSM-based storage systems, which takes into account both characteristics of PM and secondary indexing. Perseid consists of (1) a specifically designed secondary index structure that achieves high-performance insertion and query, (2) a lightweight hybrid PM-DRAM and hash-based validation approach to filter out obsolete values with subtle overhead, and (3) two adapted optimizations on primary table searching issued from secondary indexes to accelerate non-index-only queries. Our evaluation shows that Perseid outperforms existing PM-based indexes by 3-7 × and achieves about two orders of magnitude performance of state-of-the-art LSM-based secondary indexing techniques even if on PM instead of disks.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Perseid:基于lsm的存储系统的二级索引机制
基于lsm的存储系统由于在块设备上具有优异的写性能而得到了广泛的应用。但是,它们目前不能有效地支持二级索引,因为二级索引查询操作通常需要检索分散在多个LSM组件中的多个小值。在这项工作中,我们重新审视基于lsm的存储系统中具有字节可寻址持久内存(PM)的二级索引。现有的基于pm的索引不能直接胜任高效的二级索引。针对基于lsm的存储系统,我们提出了一种高效的基于PM的二次索引机制Perseid,该机制兼顾了PM和二次索引的特点。Perseid包括(1)一个专门设计的二级索引结构,实现高性能的插入和查询;(2)一个轻量级的混合PM-DRAM和基于哈希的验证方法,过滤掉开销很小的过时值;(3)对二级索引发出的主表搜索进行了两个自适应优化,以加速非仅索引的查询。我们的评估表明,即使在PM而不是磁盘上,Perseid比现有的基于PM的索引要好3-7倍,并且达到了最先进的基于lsm的二级索引技术的两个数量级的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Transactions on Storage
ACM Transactions on Storage COMPUTER SCIENCE, HARDWARE & ARCHITECTURE-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
4.20
自引率
5.90%
发文量
33
审稿时长
>12 weeks
期刊介绍: The ACM Transactions on Storage (TOS) is a new journal with an intent to publish original archival papers in the area of storage and closely related disciplines. Articles that appear in TOS will tend either to present new techniques and concepts or to report novel experiences and experiments with practical systems. Storage is a broad and multidisciplinary area that comprises of network protocols, resource management, data backup, replication, recovery, devices, security, and theory of data coding, densities, and low-power. Potential synergies among these fields are expected to open up new research directions.
期刊最新文献
LVMT: An Efficient Authenticated Storage for Blockchain The Design of Fast Delta Encoding for Delta Compression Based Storage Systems A Memory-Disaggregated Radix Tree Fastmove: A Comprehensive Study of On-Chip DMA and its Demonstration for Accelerating Data Movement in NVM-based Storage Systems FSDedup: Feature-Aware and Selective Deduplication for Improving Performance of Encrypted Non-Volatile Main Memory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1