Biodiesel production from transesterified yellow grease by ZSM-5 zeolite-supported BaO catalyst: process optimization by Taguchi’s experimental design approach
{"title":"Biodiesel production from transesterified yellow grease by ZSM-5 zeolite-supported BaO catalyst: process optimization by Taguchi’s experimental design approach","authors":"Adeyinka Sikiru Yusuff, Moses Oluwafemi Onibonoje","doi":"10.1007/s40243-023-00240-9","DOIUrl":null,"url":null,"abstract":"<div><p>Methanolysis of yellow grease (YG) was performed to synthesize its corresponding methyl ester (YGME) using BaO loaded on ZSM-5 (BaO/ZSM-5) as a heterogeneous base catalyst that was prepared via metallic solution hydrolysis method and characterized using N<sub>2</sub> adsorption–desorption (BET), surface basicity, XRD, TGA/DTA, SEM, FTIR and Raman techniques.### The Taguchi design approach was utilized to optimize the transesterification process factors, and among the parameters studied, calcination temperature was found to have a significant influence on YGME yield. At 70 ℃ for 3 h, a YGME yield of 95.9 <span>\\(\\pm 0.94\\)</span>% was obtained using a methanol/YG molar ratio of 15:1 and 1 g (2 wt.% of YG used) of BaO/ZSM-5 sample calcined at 700 ℃. The BaO/ZSM-5 catalyst was reused six times with only a 15% decrease in activity.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"12 3","pages":"199 - 208"},"PeriodicalIF":3.6000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-023-00240-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-023-00240-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Methanolysis of yellow grease (YG) was performed to synthesize its corresponding methyl ester (YGME) using BaO loaded on ZSM-5 (BaO/ZSM-5) as a heterogeneous base catalyst that was prepared via metallic solution hydrolysis method and characterized using N2 adsorption–desorption (BET), surface basicity, XRD, TGA/DTA, SEM, FTIR and Raman techniques.### The Taguchi design approach was utilized to optimize the transesterification process factors, and among the parameters studied, calcination temperature was found to have a significant influence on YGME yield. At 70 ℃ for 3 h, a YGME yield of 95.9 \(\pm 0.94\)% was obtained using a methanol/YG molar ratio of 15:1 and 1 g (2 wt.% of YG used) of BaO/ZSM-5 sample calcined at 700 ℃. The BaO/ZSM-5 catalyst was reused six times with only a 15% decrease in activity.
以负载在ZSM-5上的BaO (BaO/ZSM-5)为载体,采用金属溶液水解法制备了非均相碱催化剂,对黄色油脂(YG)进行甲醇水解合成相应的甲酯(YGME),并采用N2吸附-解吸(BET)、表面碱度、XRD、TGA/DTA、SEM、FTIR和拉曼等技术对其进行了表征。采用田口设计方法对酯交换工艺因素进行优化,发现焙烧温度对YGME产率有显著影响。在70℃下反应3 h, YGME产率为95.9 \(\pm 0.94\)% was obtained using a methanol/YG molar ratio of 15:1 and 1 g (2 wt.% of YG used) of BaO/ZSM-5 sample calcined at 700 ℃. The BaO/ZSM-5 catalyst was reused six times with only a 15% decrease in activity.
期刊介绍:
Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future.
Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality.
Topics include:
1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells.
2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion.
3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings.
4. MATERIALS modeling and theoretical aspects.
5. Advanced characterization techniques of MATERIALS
Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies