Gomaa Galal Abd El-wahhab, Taha Abdelfattah Mohammed Abdelwahab, Yasser Kamal Osman Taha Osman, Mohamed Fawzi Abdelshafie Abuhussein, Ahmed Elsayed Mahmoud Fodah, Khaled Abdeen Mousa Ali
{"title":"Performance evaluation of solar panels under different dust accumulation conditions using thermography: focusing on PV temperature variation","authors":"Gomaa Galal Abd El-wahhab, Taha Abdelfattah Mohammed Abdelwahab, Yasser Kamal Osman Taha Osman, Mohamed Fawzi Abdelshafie Abuhussein, Ahmed Elsayed Mahmoud Fodah, Khaled Abdeen Mousa Ali","doi":"10.1007/s40243-023-00246-3","DOIUrl":null,"url":null,"abstract":"<div><p>Degradation performance of photovoltaic modules (SPV) by real conditions has become increasingly problematic. In dusty areas, dust accumulation is one of the main concerns that may cause a significant determination of SPV efficiency. In the current study, the effect of four dust-accumulated densities of 6, 12, 18, and 24 g/m<sup>2</sup> have been investigated in outdoor conditions in Cairo, Egypt. The performance evaluation of SPV modules in the form of front and backside temperatures of the SPV module has been evaluated in addition to current, voltage, power, and efficiency of the SPV modules. The results showed that, as compared with a clean SPV module, with increasing dust density from 6 to 24 g/m<sup>2</sup> the frontside temperature of SPV modules were lower by 6–8 ℃. While their backside temperatures were found to be higher by 2–6 ℃. In addition, the difference between the backside and frontside temperatures of the SPV module ranged from 5 to 14 ℃ for dust modules as compared with 3 ℃ for the clean SPV module. The output power and efficiency of dusty SPV modules were found to be lower by 6–45% and 13–38%, respectively as compared with clean SPV module. The results clearly showed the importance of properly maintaining and servicing the SPV modules to avoid their degradation by dust accumulated.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"12 3","pages":"247 - 255"},"PeriodicalIF":3.6000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-023-00246-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-023-00246-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Degradation performance of photovoltaic modules (SPV) by real conditions has become increasingly problematic. In dusty areas, dust accumulation is one of the main concerns that may cause a significant determination of SPV efficiency. In the current study, the effect of four dust-accumulated densities of 6, 12, 18, and 24 g/m2 have been investigated in outdoor conditions in Cairo, Egypt. The performance evaluation of SPV modules in the form of front and backside temperatures of the SPV module has been evaluated in addition to current, voltage, power, and efficiency of the SPV modules. The results showed that, as compared with a clean SPV module, with increasing dust density from 6 to 24 g/m2 the frontside temperature of SPV modules were lower by 6–8 ℃. While their backside temperatures were found to be higher by 2–6 ℃. In addition, the difference between the backside and frontside temperatures of the SPV module ranged from 5 to 14 ℃ for dust modules as compared with 3 ℃ for the clean SPV module. The output power and efficiency of dusty SPV modules were found to be lower by 6–45% and 13–38%, respectively as compared with clean SPV module. The results clearly showed the importance of properly maintaining and servicing the SPV modules to avoid their degradation by dust accumulated.
期刊介绍:
Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future.
Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality.
Topics include:
1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells.
2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion.
3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings.
4. MATERIALS modeling and theoretical aspects.
5. Advanced characterization techniques of MATERIALS
Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies