Léa Riera, Patrício Ramalhosa, João Canning-Clode, Ignacio Gestoso
{"title":"Variability in the settlement of non-indigenous species in benthic communities from an oceanic island","authors":"Léa Riera, Patrício Ramalhosa, João Canning-Clode, Ignacio Gestoso","doi":"10.1186/s10152-018-0517-3","DOIUrl":null,"url":null,"abstract":"The introduction of non-indigenous species (NIS) in new environments represents a major threat for coastal ecosystems. A good understanding of the mechanisms and magnitude of the impact of NIS colonisation on native ecosystems is becoming increasingly crucial to develop mitigation measures and prevent new invasions. In this present study, we asked if distinct coastal benthic communities from an oceanic island can have different vulnerability to NIS colonisation process. First, PVC settlement plates were deployed for 1 year on the rocky shore of two different locations of Madeira Island (North versus South coast). Then, we implemented a mesocosm experiment where recruited plate communities were maintained under different levels of NIS propagule pressure in order to assess their vulnerability to NIS colonisation process. Results showed that NIS colonisation success was not influenced by the level of propagule pressure, but however, final colonisation patterns varied depending on the origin of the communities. This variability can be attributed to major structural differences between the preponderant species of each community and therefore to the biotic substrate they offer to colonisers. This study highlights how biotic features can alter the NIS colonisation process and importantly, shows that in an urbanisation context, the nature of the resident communities facing invasions risks needs to be closely assessed.","PeriodicalId":55063,"journal":{"name":"Helgoland Marine Research","volume":"52 1","pages":"1-15"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Helgoland Marine Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1186/s10152-018-0517-3","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 9
Abstract
The introduction of non-indigenous species (NIS) in new environments represents a major threat for coastal ecosystems. A good understanding of the mechanisms and magnitude of the impact of NIS colonisation on native ecosystems is becoming increasingly crucial to develop mitigation measures and prevent new invasions. In this present study, we asked if distinct coastal benthic communities from an oceanic island can have different vulnerability to NIS colonisation process. First, PVC settlement plates were deployed for 1 year on the rocky shore of two different locations of Madeira Island (North versus South coast). Then, we implemented a mesocosm experiment where recruited plate communities were maintained under different levels of NIS propagule pressure in order to assess their vulnerability to NIS colonisation process. Results showed that NIS colonisation success was not influenced by the level of propagule pressure, but however, final colonisation patterns varied depending on the origin of the communities. This variability can be attributed to major structural differences between the preponderant species of each community and therefore to the biotic substrate they offer to colonisers. This study highlights how biotic features can alter the NIS colonisation process and importantly, shows that in an urbanisation context, the nature of the resident communities facing invasions risks needs to be closely assessed.
期刊介绍:
Helgoland Marine Research is an open access, peer reviewed journal, publishing original research as well as reviews on all aspects of marine and brackish water ecosystems, with a focus on how organisms survive in, and interact with, their environment.
The aim of Helgoland Marine Research is to publish work with a regional focus, but with clear global implications, or vice versa; research with global emphasis and regional ramifications. We are particularly interested in contributions that further our general understanding of how marine ecosystems work, and that concentrate on species’ interactions.