Localized engineering of grain boundary morphology by electro-nano-pulsing processing

IF 8.1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Advances Pub Date : 2023-11-16 DOI:10.1016/j.mtadv.2023.100442
Wenwu Xu, Runjian Jiang, Mingjie Xu, Md Shahrier Hasan, Kyrel Polifrone, Jing Gu, Yang Yang, Elisa Torresani, Eugene Olevsky
{"title":"Localized engineering of grain boundary morphology by electro-nano-pulsing processing","authors":"Wenwu Xu, Runjian Jiang, Mingjie Xu, Md Shahrier Hasan, Kyrel Polifrone, Jing Gu, Yang Yang, Elisa Torresani, Eugene Olevsky","doi":"10.1016/j.mtadv.2023.100442","DOIUrl":null,"url":null,"abstract":"<p>We report a novel electro-nano-pulsing (ENP) processing method to achieve localized engineering of grain boundary (GB) morphology in polycrystalline metallic materials. ENP is extraordinarily capable of generating intense nanopulse electric current with a current density greater than a few to several hundreds of 10<sup>10</sup>A/m<sup>2</sup> and a pulse duration on the order of a few 100ns. Such a level of current density is ∼3–5 magnitudes higher than that is usually achieved during the Spark Plasma Sintering process. Using the Nichrome-80 superalloy as a model material, we observed a variety of GB roughening phenomena at multiple length scales, resulting in the generation of diverse forms of atomistic facets, nanoscale serrations, and nanoscale step-like GB morphologies after the ENP processing. We think that the excessive GB heat localization and electron wind force or stress are the main factors contributing to the GB morphological changes during the ENP processing. The ENP processing provides a new unique grain boundary engineering strategy to manipulate the GBs with the changes localized at the GB region, without altering its adjacent grains.</p>","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"40 5","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtadv.2023.100442","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We report a novel electro-nano-pulsing (ENP) processing method to achieve localized engineering of grain boundary (GB) morphology in polycrystalline metallic materials. ENP is extraordinarily capable of generating intense nanopulse electric current with a current density greater than a few to several hundreds of 1010A/m2 and a pulse duration on the order of a few 100ns. Such a level of current density is ∼3–5 magnitudes higher than that is usually achieved during the Spark Plasma Sintering process. Using the Nichrome-80 superalloy as a model material, we observed a variety of GB roughening phenomena at multiple length scales, resulting in the generation of diverse forms of atomistic facets, nanoscale serrations, and nanoscale step-like GB morphologies after the ENP processing. We think that the excessive GB heat localization and electron wind force or stress are the main factors contributing to the GB morphological changes during the ENP processing. The ENP processing provides a new unique grain boundary engineering strategy to manipulate the GBs with the changes localized at the GB region, without altering its adjacent grains.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电-纳米脉冲处理的晶界形貌局部工程化
本文报道了一种新的电纳米脉冲(ENP)加工方法,用于实现多晶金属材料晶界(GB)形貌的局部工程化。ENP能够产生强烈的纳米脉冲电流,电流密度大于几到几百个1010A/m2,脉冲持续时间为几100ns。这种电流密度水平比火花等离子烧结过程中通常达到的电流密度高~ 3-5个数量级。以Nichrome-80高温合金为模型材料,在不同长度尺度上观察到多种GB粗化现象,导致ENP处理后产生各种形式的原子切面、纳米级锯齿和纳米级阶梯状GB形貌。我们认为,在ENP处理过程中,过度的GB热局部化和电子风力或应力是导致GB形态变化的主要因素。ENP处理提供了一种新的独特的晶界工程策略,可以在不改变相邻晶粒的情况下,在晶界区域局部改变晶界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Today Advances
Materials Today Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
14.30
自引率
2.00%
发文量
116
审稿时长
32 days
期刊介绍: Materials Today Advances is a multi-disciplinary, open access journal that aims to connect different communities within materials science. It covers all aspects of materials science and related disciplines, including fundamental and applied research. The focus is on studies with broad impact that can cross traditional subject boundaries. The journal welcomes the submissions of articles at the forefront of materials science, advancing the field. It is part of the Materials Today family and offers authors rigorous peer review, rapid decisions, and high visibility.
期刊最新文献
Not only a matter of disorder in I-WP minimal surface-based photonic networks: Diffusive structural color in Sternotomis amabilis longhorn beetles Magnetic bilayer qubits: A bipartite quantum system Unraveling the role of relaxation and rejuvenation on the structure and deformation behavior of the Zr-based bulk metallic glass Vit105 Acoustic tweezer-driven assembly and anti-cancer property of microporous magnesium gallate Nanostructured proton-exchange membranes from self-cross-linking perfluoroalkyl-free block-co-polymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1