kishore balasubramanian, Ananthamoorthy N P, Ramya K
{"title":"An End-End Deep Learning Framework for lung infection recognition using Attention-based features and Cross average pooling","authors":"kishore balasubramanian, Ananthamoorthy N P, Ramya K","doi":"10.1615/intjmultcompeng.2022041262","DOIUrl":null,"url":null,"abstract":"Diseases like pneumonia, influenza, bronchitis, corona virus (COVID – 19) are some of the major respiratory infections that have made a major impact globally leading to disability and death around the world. Automated detection of lung infections from medical imaging combined with computer vision has a lot of promise for improving healthcare towards COVID-19 and its consequences due to restricted healthcare emergencies. Finding the affected tissues and segmenting them from lung X-ray and CT images is difficult due to comparable neighbouring tissues, hazy boundaries, and unpredictable infections. To overcome these issues, we propose a novel deep learning framework that employs attention-based feature vectors and cross average pooling to detect the lung infection from the images. Multimodal images, after enhancement are processed independently through a pretrained DenseNet where the feature extraction is performed from fully connected and average pooled layers. Instead of assigning equal weight to each feature value in the feature vectors, an attention weight is assigned to each feature to highlight how much attention should be paid to it. The obtained attention-based features are then fused using cross average pooling method to produce a discriminatory feature set leading to improved diagnosis. The fused features are passed through a proposed deep learning modified neural network classifier to diagnose the repository infection. Experiments are performed on the standard Kaggle and Mendeley datasets and the results indicated an average accuracy of 99.2% with appreciable Kappa-index and F1-Score. The results of our DL method for categorising respiratory tract infections we","PeriodicalId":50350,"journal":{"name":"International Journal for Multiscale Computational Engineering","volume":"52 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Multiscale Computational Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/intjmultcompeng.2022041262","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Diseases like pneumonia, influenza, bronchitis, corona virus (COVID – 19) are some of the major respiratory infections that have made a major impact globally leading to disability and death around the world. Automated detection of lung infections from medical imaging combined with computer vision has a lot of promise for improving healthcare towards COVID-19 and its consequences due to restricted healthcare emergencies. Finding the affected tissues and segmenting them from lung X-ray and CT images is difficult due to comparable neighbouring tissues, hazy boundaries, and unpredictable infections. To overcome these issues, we propose a novel deep learning framework that employs attention-based feature vectors and cross average pooling to detect the lung infection from the images. Multimodal images, after enhancement are processed independently through a pretrained DenseNet where the feature extraction is performed from fully connected and average pooled layers. Instead of assigning equal weight to each feature value in the feature vectors, an attention weight is assigned to each feature to highlight how much attention should be paid to it. The obtained attention-based features are then fused using cross average pooling method to produce a discriminatory feature set leading to improved diagnosis. The fused features are passed through a proposed deep learning modified neural network classifier to diagnose the repository infection. Experiments are performed on the standard Kaggle and Mendeley datasets and the results indicated an average accuracy of 99.2% with appreciable Kappa-index and F1-Score. The results of our DL method for categorising respiratory tract infections we
期刊介绍:
The aim of the journal is to advance the research and practice in diverse areas of Multiscale Computational Science and Engineering. The journal will publish original papers and educational articles of general value to the field that will bridge the gap between modeling, simulation and design of products based on multiscale principles. The scope of the journal includes papers concerned with bridging of physical scales, ranging from the atomic level to full scale products and problems involving multiple physical processes interacting at multiple spatial and temporal scales. The emerging areas of computational nanotechnology and computational biotechnology and computational energy sciences are of particular interest to the journal. The journal is intended to be of interest and use to researchers and practitioners in academic, governmental and industrial communities.