{"title":"Implementation of an oracle-structured bundle method for distributed optimization","authors":"Tetiana Parshakova, Fangzhao Zhang, Stephen Boyd","doi":"10.1007/s11081-023-09859-z","DOIUrl":null,"url":null,"abstract":"<p>We consider the problem of minimizing a function that is a sum of convex agent functions plus a convex common public function that couples them. The agent functions can only be accessed via a subgradient oracle; the public function is assumed to be structured and expressible in a domain specific language (DSL) for convex optimization. We focus on the case when the evaluation of the agent oracles can require significant effort, which justifies the use of solution methods that carry out significant computation in each iteration. To solve this problem we integrate multiple known techniques (or adaptations of known techniques) for bundle-type algorithms, obtaining a method which has a number of practical advantages over other methods that are compatible with our access methods, such as proximal subgradient methods. First, it is reliable, and works well across a number of applications. Second, it has very few parameters that need to be tuned, and works well with sensible default values. Third, it typically produces a reasonable approximate solution in just a few tens of iterations. This paper is accompanied by an open-source implementation of the proposed solver, available at https://github.com/cvxgrp/OSBDO.</p>","PeriodicalId":56141,"journal":{"name":"Optimization and Engineering","volume":"44 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11081-023-09859-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
We consider the problem of minimizing a function that is a sum of convex agent functions plus a convex common public function that couples them. The agent functions can only be accessed via a subgradient oracle; the public function is assumed to be structured and expressible in a domain specific language (DSL) for convex optimization. We focus on the case when the evaluation of the agent oracles can require significant effort, which justifies the use of solution methods that carry out significant computation in each iteration. To solve this problem we integrate multiple known techniques (or adaptations of known techniques) for bundle-type algorithms, obtaining a method which has a number of practical advantages over other methods that are compatible with our access methods, such as proximal subgradient methods. First, it is reliable, and works well across a number of applications. Second, it has very few parameters that need to be tuned, and works well with sensible default values. Third, it typically produces a reasonable approximate solution in just a few tens of iterations. This paper is accompanied by an open-source implementation of the proposed solver, available at https://github.com/cvxgrp/OSBDO.
期刊介绍:
Optimization and Engineering is a multidisciplinary journal; its primary goal is to promote the application of optimization methods in the general area of engineering sciences. We expect submissions to OPTE not only to make a significant optimization contribution but also to impact a specific engineering application.
Topics of Interest:
-Optimization: All methods and algorithms of mathematical optimization, including blackbox and derivative-free optimization, continuous optimization, discrete optimization, global optimization, linear and conic optimization, multiobjective optimization, PDE-constrained optimization & control, and stochastic optimization. Numerical and implementation issues, optimization software, benchmarking, and case studies.
-Engineering Sciences: Aerospace engineering, biomedical engineering, chemical & process engineering, civil, environmental, & architectural engineering, electrical engineering, financial engineering, geosciences, healthcare engineering, industrial & systems engineering, mechanical engineering & MDO, and robotics.