Optimization of the composition of residential buildings in a renewable energy community based on monitored data

IF 2 3区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY Optimization and Engineering Pub Date : 2024-09-13 DOI:10.1007/s11081-024-09913-4
Eva Schito, Lorenzo Taverni, Paolo Conti, Daniele Testi
{"title":"Optimization of the composition of residential buildings in a renewable energy community based on monitored data","authors":"Eva Schito, Lorenzo Taverni, Paolo Conti, Daniele Testi","doi":"10.1007/s11081-024-09913-4","DOIUrl":null,"url":null,"abstract":"<p>Energy communities (ECs) are a promising solution to integrate renewable local production with buildings’ systems and services. To exploit renewable energy sources, ECs should be carefully designed, identifying an appropriate mix of prosumers and consumers. In this research, the electrical energy loads of eight dwellings have been monitored for a year. Then, each dwelling is evaluated either as a mere consumer, maintaining its monitored electrical consumption profile as it is, or as a prosumer, thus simulating a photovoltaic system on the roof, sized to provide a given fraction of its energy needs and sharing the surplus with other EC participants. Genetic optimization is employed to seek the optimal mix of consumers and prosumers within the community to optimize the shared energy within the EC. Results show that dwellings with night-time energy requirements are included as prosumers to maximize photovoltaic power sharing during daylight time, and dwellings with regular daily loads are included as consumers.</p>","PeriodicalId":56141,"journal":{"name":"Optimization and Engineering","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11081-024-09913-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Energy communities (ECs) are a promising solution to integrate renewable local production with buildings’ systems and services. To exploit renewable energy sources, ECs should be carefully designed, identifying an appropriate mix of prosumers and consumers. In this research, the electrical energy loads of eight dwellings have been monitored for a year. Then, each dwelling is evaluated either as a mere consumer, maintaining its monitored electrical consumption profile as it is, or as a prosumer, thus simulating a photovoltaic system on the roof, sized to provide a given fraction of its energy needs and sharing the surplus with other EC participants. Genetic optimization is employed to seek the optimal mix of consumers and prosumers within the community to optimize the shared energy within the EC. Results show that dwellings with night-time energy requirements are included as prosumers to maximize photovoltaic power sharing during daylight time, and dwellings with regular daily loads are included as consumers.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
根据监测数据优化可再生能源社区住宅楼的构成
能源社区(ECs)是将本地可再生能源生产与建筑系统和服务相结合的一种前景广阔的解决方案。为利用可再生能源,能源社区应精心设计,确定适当的消费者和消费者组合。在这项研究中,对八栋住宅的电能负荷进行了为期一年的监测。然后,对每栋住宅进行评估,要么将其视为单纯的消费者,保持监测到的电力消耗情况不变;要么将其视为准消费者,在屋顶上模拟光伏系统,按一定大小提供其所需的部分能源,并与其他 EC 参与者分享剩余能源。该系统采用遗传优化技术,寻求社区内消费者和准消费者的最佳组合,以优化 EC 内的能源共享。结果表明,将夜间有能源需求的住宅作为准消费者,可在白天最大限度地共享光伏发电,而将每天有固定负荷的住宅作为消费者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Optimization and Engineering
Optimization and Engineering 工程技术-工程:综合
CiteScore
4.80
自引率
14.30%
发文量
73
审稿时长
>12 weeks
期刊介绍: Optimization and Engineering is a multidisciplinary journal; its primary goal is to promote the application of optimization methods in the general area of engineering sciences. We expect submissions to OPTE not only to make a significant optimization contribution but also to impact a specific engineering application. Topics of Interest: -Optimization: All methods and algorithms of mathematical optimization, including blackbox and derivative-free optimization, continuous optimization, discrete optimization, global optimization, linear and conic optimization, multiobjective optimization, PDE-constrained optimization & control, and stochastic optimization. Numerical and implementation issues, optimization software, benchmarking, and case studies. -Engineering Sciences: Aerospace engineering, biomedical engineering, chemical & process engineering, civil, environmental, & architectural engineering, electrical engineering, financial engineering, geosciences, healthcare engineering, industrial & systems engineering, mechanical engineering & MDO, and robotics.
期刊最新文献
Optimizing compressor rotor–stator assembly process to minimize clearance non-uniformity An integrated economic production quantity model with shortages considering energy utilization in production and warehousing Optimization of the composition of residential buildings in a renewable energy community based on monitored data Optimized dispatch and component sizing for a nuclear-multi-effect distillation integrated energy system using thermal energy storage The multi-class Stackelberg prediction game with least squares loss
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1