{"title":"fastMI: A fast and consistent copula-based nonparametric estimator of mutual information","authors":"Soumik Purkayastha , Peter X.-K. Song","doi":"10.1016/j.jmva.2023.105270","DOIUrl":null,"url":null,"abstract":"<div><p><span>As a fundamental concept in information theory<span>, mutual information (</span></span><span><math><mrow><mi>M</mi><mi>I</mi></mrow></math></span>) has been commonly applied to quantify association between random vectors. Most existing nonparametric estimators of <span><math><mrow><mi>M</mi><mi>I</mi></mrow></math></span> have unstable statistical performance since they involve parameter tuning. We develop a consistent and powerful estimator, called <span>fastMI</span><span>, that does not incur any parameter tuning. Based on a copula formulation, </span><span>fastMI</span> estimates <span><math><mrow><mi>M</mi><mi>I</mi></mrow></math></span> by leveraging Fast Fourier transform-based estimation of the underlying density. Extensive simulation studies reveal that <span>fastMI</span> outperforms state-of-the-art estimators with improved estimation accuracy and reduced run time for large data sets. <span>fastMI</span> provides a powerful test for independence that exhibits satisfactory type I error control. Anticipating that it will be a powerful tool in estimating mutual information in a broad range of data, we develop an <span>R</span> package <span>fastMI</span> for broader dissemination.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"201 ","pages":"Article 105270"},"PeriodicalIF":1.4000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X23001161","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
As a fundamental concept in information theory, mutual information () has been commonly applied to quantify association between random vectors. Most existing nonparametric estimators of have unstable statistical performance since they involve parameter tuning. We develop a consistent and powerful estimator, called fastMI, that does not incur any parameter tuning. Based on a copula formulation, fastMI estimates by leveraging Fast Fourier transform-based estimation of the underlying density. Extensive simulation studies reveal that fastMI outperforms state-of-the-art estimators with improved estimation accuracy and reduced run time for large data sets. fastMI provides a powerful test for independence that exhibits satisfactory type I error control. Anticipating that it will be a powerful tool in estimating mutual information in a broad range of data, we develop an R package fastMI for broader dissemination.
期刊介绍:
Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data.
The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of
Copula modeling
Functional data analysis
Graphical modeling
High-dimensional data analysis
Image analysis
Multivariate extreme-value theory
Sparse modeling
Spatial statistics.