fastMI: A fast and consistent copula-based nonparametric estimator of mutual information

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Journal of Multivariate Analysis Pub Date : 2023-11-29 DOI:10.1016/j.jmva.2023.105270
Soumik Purkayastha , Peter X.-K. Song
{"title":"fastMI: A fast and consistent copula-based nonparametric estimator of mutual information","authors":"Soumik Purkayastha ,&nbsp;Peter X.-K. Song","doi":"10.1016/j.jmva.2023.105270","DOIUrl":null,"url":null,"abstract":"<div><p><span>As a fundamental concept in information theory<span>, mutual information (</span></span><span><math><mrow><mi>M</mi><mi>I</mi></mrow></math></span>) has been commonly applied to quantify association between random vectors. Most existing nonparametric estimators of <span><math><mrow><mi>M</mi><mi>I</mi></mrow></math></span> have unstable statistical performance since they involve parameter tuning. We develop a consistent and powerful estimator, called <span>fastMI</span><span>, that does not incur any parameter tuning. Based on a copula formulation, </span><span>fastMI</span> estimates <span><math><mrow><mi>M</mi><mi>I</mi></mrow></math></span> by leveraging Fast Fourier transform-based estimation of the underlying density. Extensive simulation studies reveal that <span>fastMI</span> outperforms state-of-the-art estimators with improved estimation accuracy and reduced run time for large data sets. <span>fastMI</span> provides a powerful test for independence that exhibits satisfactory type I error control. Anticipating that it will be a powerful tool in estimating mutual information in a broad range of data, we develop an <span>R</span> package <span>fastMI</span> for broader dissemination.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"201 ","pages":"Article 105270"},"PeriodicalIF":1.4000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X23001161","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

As a fundamental concept in information theory, mutual information (MI) has been commonly applied to quantify association between random vectors. Most existing nonparametric estimators of MI have unstable statistical performance since they involve parameter tuning. We develop a consistent and powerful estimator, called fastMI, that does not incur any parameter tuning. Based on a copula formulation, fastMI estimates MI by leveraging Fast Fourier transform-based estimation of the underlying density. Extensive simulation studies reveal that fastMI outperforms state-of-the-art estimators with improved estimation accuracy and reduced run time for large data sets. fastMI provides a powerful test for independence that exhibits satisfactory type I error control. Anticipating that it will be a powerful tool in estimating mutual information in a broad range of data, we develop an R package fastMI for broader dissemination.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
fastMI:一种快速且一致的互信息非参数估计器
互信息(MI)是信息论中的一个基本概念,常用于量化随机向量之间的关联。大多数现有的非参数估计器由于涉及参数调整,统计性能不稳定。我们开发了一个一致且强大的估计器,称为fastMI,它不会引起任何参数调优。fastMI基于一个联结公式,通过利用基于快速傅立叶变换的潜在密度估计来估计MI。广泛的模拟研究表明,fastMI在提高估计精度和减少大型数据集运行时间方面优于最先进的估计器。fastMI提供了一个强大的独立性测试,它展示了令人满意的类型I错误控制。预计它将是一个强大的工具,在广泛的数据估计相互信息,我们开发了一个R包快速mi更广泛的传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
期刊最新文献
Maximum likelihood estimation of elliptical tail Covariance parameter estimation of Gaussian processes with approximated functional inputs PDE-regularised spatial quantile regression Diagnostic checking of periodic vector autoregressive time series models with dependent errors A conditional distribution function-based measure for independence and K-sample tests in multivariate data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1