Junwen Guo, Sonia Brugel, Agneta Andersson, Mehdi Cherif
{"title":"Carbon-nitrogen association influences response of the microplankton food web to enrichment","authors":"Junwen Guo, Sonia Brugel, Agneta Andersson, Mehdi Cherif","doi":"10.3354/ame01993","DOIUrl":null,"url":null,"abstract":"ABSTRACT: In aquatic ecosystems, there are 2 major forms of N available at the base of the planktonic food web: dissolved organic N (DON) and dissolved inorganic N (DIN). In DON, N is associated with organic C, which may promote both heterotrophs and autotrophs. In environments where DIN nitrate is the prevailing N form and dissociated dissolved organic C (DOC) is available, heterotrophs may also be promoted, but they may compete with the autotrophs for DIN. The influence of associated or dissociated CN nutrient sources on the interaction between organisms and the food web function is poorly known and has not been studied before. To approach this question, we performed a microcosm experiment with a coastal microbial food web, where N and C nutrient sources were provided either associated in 1 molecular compound (DON), or dissociated in 2 separate molecular compounds (DIN and DOC). The results showed that association or dissociation of C and N input had marked effects on all trophic levels, most probably through its effect on bacteria-phytoplankton interaction, which switched between increased coupling and increased competition. The biomass of all components of the food web benefitted from the association of C and N in a single DON molecule. Our study indicated that the degree of association between C and N is an important factor affecting the productivity and efficiency of the microbial food web. Therefore, the C and N association should be considered when studying aquatic systems.","PeriodicalId":8112,"journal":{"name":"Aquatic Microbial Ecology","volume":"5 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Microbial Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3354/ame01993","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT: In aquatic ecosystems, there are 2 major forms of N available at the base of the planktonic food web: dissolved organic N (DON) and dissolved inorganic N (DIN). In DON, N is associated with organic C, which may promote both heterotrophs and autotrophs. In environments where DIN nitrate is the prevailing N form and dissociated dissolved organic C (DOC) is available, heterotrophs may also be promoted, but they may compete with the autotrophs for DIN. The influence of associated or dissociated CN nutrient sources on the interaction between organisms and the food web function is poorly known and has not been studied before. To approach this question, we performed a microcosm experiment with a coastal microbial food web, where N and C nutrient sources were provided either associated in 1 molecular compound (DON), or dissociated in 2 separate molecular compounds (DIN and DOC). The results showed that association or dissociation of C and N input had marked effects on all trophic levels, most probably through its effect on bacteria-phytoplankton interaction, which switched between increased coupling and increased competition. The biomass of all components of the food web benefitted from the association of C and N in a single DON molecule. Our study indicated that the degree of association between C and N is an important factor affecting the productivity and efficiency of the microbial food web. Therefore, the C and N association should be considered when studying aquatic systems.
期刊介绍:
AME is international and interdisciplinary. It presents rigorously refereed and carefully selected Research Articles, Reviews and Notes, as well as Comments/Reply Comments (for details see AME 27:209), Opinion Pieces (previously called ''As I See It'') and AME Specials. For details consult the Guidelines for Authors. Papers may be concerned with:
Tolerances and responses of microorganisms to variations in abiotic and biotic components of their environment; microbial life under extreme environmental conditions (climate, temperature, pressure, osmolarity, redox, etc.).
Role of aquatic microorganisms in the production, transformation and decomposition of organic matter; flow patterns of energy and matter as these pass through microorganisms; population dynamics; trophic interrelationships; modelling, both theoretical and via computer simulation, of individual microorganisms and microbial populations; biodiversity.
Absorption and transformation of inorganic material; synthesis and transformation of organic material (autotrophic and heterotrophic); non-genetic and genetic adaptation; behaviour; molecular microbial ecology; symbioses.