3D interconnected N-doped graphene architecture encapsulated with oxygen-deficient TiO2 nanotube array: synergism of oxygen vacancy and carbon materials on enhanced sulfur conversion and catalytic activity of TiO2 nanotube array in Li–S batteries†

IF 3.2 3区 工程技术 Q2 CHEMISTRY, PHYSICAL Molecular Systems Design & Engineering Pub Date : 2023-11-23 DOI:10.1039/D3ME00163F
Shaymaa Jabbar Abdulrazzaq
{"title":"3D interconnected N-doped graphene architecture encapsulated with oxygen-deficient TiO2 nanotube array: synergism of oxygen vacancy and carbon materials on enhanced sulfur conversion and catalytic activity of TiO2 nanotube array in Li–S batteries†","authors":"Shaymaa Jabbar Abdulrazzaq","doi":"10.1039/D3ME00163F","DOIUrl":null,"url":null,"abstract":"<p >The main challenges to Li–S battery use include poor conductivity, the shuttling effect, and slow LiPS transition. In this work, a 3D framework of N-doped graphene interconnected with defect-rich TiO<small><sub>2</sub></small> nanotubes acts as a sulfur host. A narrow TiO<small><sub>2</sub></small> nanotube reduces lithium-ion diffusion length and facilitates fast charge transport. The unique 3D porous nanostructure holds a wide range of sulfur species and provides optimal pathways for electrolyte penetration. It also counters volume expansion during cycling and serves as a platform for the successful absorption of LiPSs. The TiO<small><sub>2</sub></small> nanowire with oxygen vacancy/N-doped graphene aerogel/sulfur (S-OVTNW/NGA) electrode has a small aspect ratio and is attached to graphene layers, which anchors LiPSs through a strong chemical interaction. Oxygen deficiency boosts electrical conductivity, reduces LiPS flow into the electrolyte, improves catalytic performance, and speeds up LiPS transformation. This design provides excellent electrochemical performance. The cathode has a notable primary specific capacity of 1370.2 mAh g<small><sup>−1</sup></small> at <em>J</em> = 0.2 C, with a sulfur ratio of 80%. Following 100 cycles, the observed capacity of the specimen remains at 879.2 mAh g<small><sup>−1</sup></small>, signifying a retention rate of 66.5%. Its capacity of 635.5 mAh g<small><sup>−1</sup></small> under 4 C shows its excellent rate performance. The findings may accelerate the development of electrode materials for lithium–sulfur (Li–S) batteries that are more efficient and cost-effective.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Design & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/me/d3me00163f","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The main challenges to Li–S battery use include poor conductivity, the shuttling effect, and slow LiPS transition. In this work, a 3D framework of N-doped graphene interconnected with defect-rich TiO2 nanotubes acts as a sulfur host. A narrow TiO2 nanotube reduces lithium-ion diffusion length and facilitates fast charge transport. The unique 3D porous nanostructure holds a wide range of sulfur species and provides optimal pathways for electrolyte penetration. It also counters volume expansion during cycling and serves as a platform for the successful absorption of LiPSs. The TiO2 nanowire with oxygen vacancy/N-doped graphene aerogel/sulfur (S-OVTNW/NGA) electrode has a small aspect ratio and is attached to graphene layers, which anchors LiPSs through a strong chemical interaction. Oxygen deficiency boosts electrical conductivity, reduces LiPS flow into the electrolyte, improves catalytic performance, and speeds up LiPS transformation. This design provides excellent electrochemical performance. The cathode has a notable primary specific capacity of 1370.2 mAh g−1 at J = 0.2 C, with a sulfur ratio of 80%. Following 100 cycles, the observed capacity of the specimen remains at 879.2 mAh g−1, signifying a retention rate of 66.5%. Its capacity of 635.5 mAh g−1 under 4 C shows its excellent rate performance. The findings may accelerate the development of electrode materials for lithium–sulfur (Li–S) batteries that are more efficient and cost-effective.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
缺氧TiO2纳米管阵列封装的三维互连n掺杂石墨烯结构:氧空位和碳材料对Li-S电池中TiO2纳米管阵列硫转化和催化活性增强的协同作用
Li-S电池使用的主要挑战包括导电性差、穿梭效应和缓慢的lip过渡。在这项工作中,n掺杂石墨烯的3D框架与富含缺陷的TiO2纳米管相互连接,作为硫宿主。窄的TiO2纳米管减少了锂离子的扩散长度,促进了电荷的快速传输。独特的3D多孔纳米结构容纳了广泛的硫种,并为电解质渗透提供了最佳途径。它还可以在循环过程中对抗体积膨胀,并作为成功吸收LiPSs的平台。带有氧空位/ n掺杂石墨烯气凝胶/硫(S-OVTNW/NGA)电极的TiO2纳米线具有小宽高比,附着在石墨烯层上,通过强化学相互作用锚定LiPSs。缺氧可提高导电率,减少LiPS进入电解液,提高催化性能,加速LiPS的转化。这种设计提供了优异的电化学性能。在J = 0.2 C,硫比为80%时,阴极的初级比容量为1370.2 mAh g−1。循环100次后,观察到样品的容量保持在879.2 mAh g−1,保留率为66.5%。其在4℃下的容量为635.5 mAh g−1,具有优异的倍率性能。这一发现可能会加速锂硫(Li-S)电池电极材料的开发,从而提高效率和成本效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Systems Design & Engineering
Molecular Systems Design & Engineering Engineering-Biomedical Engineering
CiteScore
6.40
自引率
2.80%
发文量
144
期刊介绍: Molecular Systems Design & Engineering provides a hub for cutting-edge research into how understanding of molecular properties, behaviour and interactions can be used to design and assemble better materials, systems, and processes to achieve specific functions. These may have applications of technological significance and help address global challenges.
期刊最新文献
Designing novel inhibitor derivatives targeting SARS-CoV-2 Mpro enzyme: a deep learning and structure biology approach Unravelling the impact of sulfur atom oxidation and donor–acceptor effects on the performance of blue TADF emitters: a detailed computational study Empowering Tomorrow's Medicine: Energy-Driven Micro/Nano-Robots Redefining Biomedical Applications Back cover Outstanding Reviewers for Molecular Systems Design & Engineering in 2023
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1