On the Power of Pearson’s Test under Local Alternatives in Autoregression with Outliers

IF 0.8 Q3 STATISTICS & PROBABILITY Mathematical Methods of Statistics Pub Date : 2019-05-03 DOI:10.3103/s1066530719010046
M. V. Boldin
{"title":"On the Power of Pearson’s Test under Local Alternatives in Autoregression with Outliers","authors":"M. V. Boldin","doi":"10.3103/s1066530719010046","DOIUrl":null,"url":null,"abstract":"We consider a stationary linear <i>AR</i>(<i>p</i>) model with contamination (gross errors in the observations). The autoregression parameters are unknown, as well as the distribution of innovations. Based on the residuals from the parameter estimates, an analog of the empirical distribution function is defined and a test of Pearson’s chi-square type is constructed for testing hypotheses on the distribution of innovations. We obtain the asymptotic power of this test under local alternatives and establish its qualitative robustness under the hypothesis and alternatives.","PeriodicalId":46039,"journal":{"name":"Mathematical Methods of Statistics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2019-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066530719010046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 7

Abstract

We consider a stationary linear AR(p) model with contamination (gross errors in the observations). The autoregression parameters are unknown, as well as the distribution of innovations. Based on the residuals from the parameter estimates, an analog of the empirical distribution function is defined and a test of Pearson’s chi-square type is constructed for testing hypotheses on the distribution of innovations. We obtain the asymptotic power of this test under local alternatives and establish its qualitative robustness under the hypothesis and alternatives.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有离群值的自回归中局部选择下Pearson检验的威力
我们考虑一个带有污染(观测中的严重误差)的平稳线性AR(p)模型。自回归参数是未知的,以及创新的分布。根据参数估计的残差,定义了经验分布函数的类比,并构造了皮尔逊卡方型检验,用于检验创新分布的假设。我们得到了该检验在局部选择下的渐近幂,并建立了它在假设和选择下的定性稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mathematical Methods of Statistics
Mathematical Methods of Statistics STATISTICS & PROBABILITY-
CiteScore
0.60
自引率
0.00%
发文量
2
期刊介绍: Mathematical Methods of Statistics  is an is an international peer reviewed journal dedicated to the mathematical foundations of statistical theory. It primarily publishes research papers with complete proofs and, occasionally, review papers on particular problems of statistics. Papers dealing with applications of statistics are also published if they contain new theoretical developments to the underlying statistical methods. The journal provides an outlet for research in advanced statistical methodology and for studies where such methodology is effectively used or which stimulate its further development.
期刊最新文献
Asymptotic Properties of Extrema of Moving Sums of Independent Non-identically Distributed Variables Stochastic Comparisons of the Smallest Claim Amounts from Two Heterogeneous Portfolios Following Exponentiated Weibull Distribution Estimation of Parameters of Misclassified Size Biased Uniform Poisson Distribution and Its Application Rates of the Strong Uniform Consistency with Rates for Conditional U-Statistics Estimators with General Kernels on Manifolds On Aggregation of Uncensored and Censored Observations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1