Pub Date : 2024-07-15DOI: 10.3103/s1066530724700078
Sam Efromovich
Abstract
In survival analysis a random right-censoring partitions data into uncensored and censored observations of the lifetime of interest. The dominance of uncensored observations is a familiar methodology in nonparametric estimation motivated by the classical Kaplan–Meier product-limit and Cox partial likelihood estimators. Nonetheless, for high rate censoring it is of interest to understand what, if anything, can be done by aggregating uncensored and censored observations for the staple nonparametric problems of density and regression estimation. The oracle, who knows distribution of the censoring lifetime, can use each subsample for consistent estimation and hence may shed light on the aggregation. The oracle’s asymptotic theory reveals that density estimation, based on censored observations, is an ill-posed problem with slower rates of risk convergence, the ill-posedness occurs in frequency-domain, its severity increases with frequency, and accordingly a special aggregation on low frequencies may be beneficial. On the other hand, censored observations are not ill-posed for nonparametric regression and the aggregation is feasible. Based on these theoretical results, methodology of aggregation in frequency domain is developed and proposed estimators are tested on simulated and real examples.
{"title":"On Aggregation of Uncensored and Censored Observations","authors":"Sam Efromovich","doi":"10.3103/s1066530724700078","DOIUrl":"https://doi.org/10.3103/s1066530724700078","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In survival analysis a random right-censoring partitions data into uncensored and censored observations of the lifetime of interest. The dominance of uncensored observations is a familiar methodology in nonparametric estimation motivated by the classical Kaplan–Meier product-limit and Cox partial likelihood estimators. Nonetheless, for high rate censoring it is of interest to understand what, if anything, can be done by aggregating uncensored and censored observations for the staple nonparametric problems of density and regression estimation. The oracle, who knows distribution of the censoring lifetime, can use each subsample for consistent estimation and hence may shed light on the aggregation. The oracle’s asymptotic theory reveals that density estimation, based on censored observations, is an ill-posed problem with slower rates of risk convergence, the ill-posedness occurs in frequency-domain, its severity increases with frequency, and accordingly a special aggregation on low frequencies may be beneficial. On the other hand, censored observations are not ill-posed for nonparametric regression and the aggregation is feasible. Based on these theoretical results, methodology of aggregation in frequency domain is developed and proposed estimators are tested on simulated and real examples.</p>","PeriodicalId":46039,"journal":{"name":"Mathematical Methods of Statistics","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141717518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-15DOI: 10.3103/s106653072470008x
B. S. Trivedi, D. R. Barot, M. N. Patel
Abstract
Statistical data analysis is of great interest in every field of management, business, engineering, medicine, etc. At the time of classification and analysis, errors may arise, like a classification of observation in the other class instead of the actual class. All fields of science and economics have substantial problems due to misclassification errors in the observed data. Due to a misclassification error in the data, the sampling process may not suggest an appropriate probability distribution, and in that case, inference is impaired. When these types of errors are identified in variables, it is expected to consider the problem’s solution regarding classification errors. This paper presents the situation where specific counts are reported erroneously as belonging to other counts in the context of size biased Uniform Poisson distribution, the so-called misclassified size biased Uniform Poisson distribution. Further, we have estimated the parameters of misclassified size biased Uniform Poisson distribution by applying the method of moments, maximum likelihood method, and approximate Bayes estimation method. A simulation study is carried out to assess the performance of estimation methods. A real dataset is discussed to demonstrate the suitability and applicability of the proposed distribution in the modeling count dataset. A Monte Carlo simulation study is presented to compare the estimators. The simulation results show that the ML estimates perform better than their corresponding moment estimates and approximate Bayes estimates.
{"title":"Estimation of Parameters of Misclassified Size Biased Uniform Poisson Distribution and Its Application","authors":"B. S. Trivedi, D. R. Barot, M. N. Patel","doi":"10.3103/s106653072470008x","DOIUrl":"https://doi.org/10.3103/s106653072470008x","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Statistical data analysis is of great interest in every field of\u0000management, business, engineering, medicine, etc. At the time of\u0000classification and analysis, errors may arise, like a\u0000classification of observation in the other class instead of the\u0000actual class. All fields of science and economics have substantial\u0000problems due to misclassification errors in the observed data. Due\u0000to a misclassification error in the data, the sampling process may\u0000not suggest an appropriate probability distribution, and in that\u0000case, inference is impaired. When these types of errors are\u0000identified in variables, it is expected to consider the problem’s\u0000solution regarding classification errors. This paper presents the\u0000situation where specific counts are reported erroneously as\u0000belonging to other counts in the context of size biased Uniform\u0000Poisson distribution, the so-called misclassified size biased\u0000Uniform Poisson distribution. Further, we have estimated the\u0000parameters of misclassified size biased Uniform Poisson\u0000distribution by applying the method of moments, maximum likelihood\u0000method, and approximate Bayes estimation method. A simulation\u0000study is carried out to assess the performance of estimation\u0000methods. A real dataset is discussed to demonstrate the\u0000suitability and applicability of the proposed distribution in the\u0000modeling count dataset. A Monte Carlo simulation study is\u0000presented to compare the estimators. The simulation results show\u0000that the ML estimates perform better than their corresponding\u0000moment estimates and approximate Bayes estimates.</p>","PeriodicalId":46039,"journal":{"name":"Mathematical Methods of Statistics","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141717516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}