{"title":"Advisory versus automated dynamic eco-driving at signalized intersections: lessons learnt from empirical evidence and simulation experiments","authors":"Evangelos Mintsis , Eleni I. Vlahogianni , Evangelos Mitsakis , Georgia Aifadopoulou","doi":"10.1080/15472450.2023.2289118","DOIUrl":null,"url":null,"abstract":"<div><div>Research in the field of dynamic eco-driving has been primarily coupled with connected and automated vehicles which are equipped with automation functions that can accurately execute energy-efficient speed advice. Advisory dynamic eco-driving that entails driver adaptation to energy-efficient speed advice has received lesser attention although mixed traffic is expected to prevail in the forthcoming decades. This study developed a decision tree model based on real-world data collected during the pilot deployment of an advisory speed advice service along an urban arterial corridor to emulate driver adaptation to speed advice. The decision tree model was integrated into the control logic of an enhanced velocity planning algorithm to replicate the behavior of manually driven connected vehicles along dynamic eco-driving service zones in a microscopic traffic simulation environment. The conducted simulation analysis encompassed scenarios with varying penetration rates of advisory dynamic eco-driving technology, automated dynamic eco-driving technology and manually driven unequipped vehicles. Evaluation of simulation scenarios was based on the estimation of several environmental, traffic efficiency and surrogate safety measures. Simulation results indicated that performance of advisory dynamic eco-driving depends on driver adaptation to speed advice and ranges between that of manually driven unequipped vehicles and its automated counterpart. Moreover, geometrical and operational characteristics of intersection approaches comprising dynamic eco-driving service zones can influence driver adaptation to speed advice. Environmental, safety and traffic efficiency benefits are maximized in the case of vehicle fleets fully equipped with automated dynamic eco-driving systems.</div></div>","PeriodicalId":54792,"journal":{"name":"Journal of Intelligent Transportation Systems","volume":"28 6","pages":"Pages 1044-1063"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S154724502300107X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Research in the field of dynamic eco-driving has been primarily coupled with connected and automated vehicles which are equipped with automation functions that can accurately execute energy-efficient speed advice. Advisory dynamic eco-driving that entails driver adaptation to energy-efficient speed advice has received lesser attention although mixed traffic is expected to prevail in the forthcoming decades. This study developed a decision tree model based on real-world data collected during the pilot deployment of an advisory speed advice service along an urban arterial corridor to emulate driver adaptation to speed advice. The decision tree model was integrated into the control logic of an enhanced velocity planning algorithm to replicate the behavior of manually driven connected vehicles along dynamic eco-driving service zones in a microscopic traffic simulation environment. The conducted simulation analysis encompassed scenarios with varying penetration rates of advisory dynamic eco-driving technology, automated dynamic eco-driving technology and manually driven unequipped vehicles. Evaluation of simulation scenarios was based on the estimation of several environmental, traffic efficiency and surrogate safety measures. Simulation results indicated that performance of advisory dynamic eco-driving depends on driver adaptation to speed advice and ranges between that of manually driven unequipped vehicles and its automated counterpart. Moreover, geometrical and operational characteristics of intersection approaches comprising dynamic eco-driving service zones can influence driver adaptation to speed advice. Environmental, safety and traffic efficiency benefits are maximized in the case of vehicle fleets fully equipped with automated dynamic eco-driving systems.
期刊介绍:
The Journal of Intelligent Transportation Systems is devoted to scholarly research on the development, planning, management, operation and evaluation of intelligent transportation systems. Intelligent transportation systems are innovative solutions that address contemporary transportation problems. They are characterized by information, dynamic feedback and automation that allow people and goods to move efficiently. They encompass the full scope of information technologies used in transportation, including control, computation and communication, as well as the algorithms, databases, models and human interfaces. The emergence of these technologies as a new pathway for transportation is relatively new.
The Journal of Intelligent Transportation Systems is especially interested in research that leads to improved planning and operation of the transportation system through the application of new technologies. The journal is particularly interested in research that adds to the scientific understanding of the impacts that intelligent transportation systems can have on accessibility, congestion, pollution, safety, security, noise, and energy and resource consumption.
The journal is inter-disciplinary, and accepts work from fields of engineering, economics, planning, policy, business and management, as well as any other disciplines that contribute to the scientific understanding of intelligent transportation systems. The journal is also multi-modal, and accepts work on intelligent transportation for all forms of ground, air and water transportation. Example topics include the role of information systems in transportation, traffic flow and control, vehicle control, routing and scheduling, traveler response to dynamic information, planning for ITS innovations, evaluations of ITS field operational tests, ITS deployment experiences, automated highway systems, vehicle control systems, diffusion of ITS, and tools/software for analysis of ITS.