Comet 81P/Wild 2: A record of the Solar System's wild youth

IF 2.6 3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Chemie Der Erde-Geochemistry Pub Date : 2023-11-01 DOI:10.1016/j.chemer.2023.126046
Ryan C. Ogliore
{"title":"Comet 81P/Wild 2: A record of the Solar System's wild youth","authors":"Ryan C. Ogliore","doi":"10.1016/j.chemer.2023.126046","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>NASA's Stardust mission returned rocky material from the coma of comet 81P/Wild 2 (pronounced “Vilt 2”) to Earth for laboratory study on January 15, 2006. </span>Comet Wild 2<span> contains volatile ices and likely accreted beyond the orbit of Neptune. It was expected that the Wild 2 samples would contain abundant primordial molecular cloud material—interstellar and circumstellar grains. Instead, the interstellar component of Wild 2 was found to be very minor, and nearly all of the returned particles formed in broad and diverse regions of the </span></span>solar nebula<span>. While some characteristics of the Wild 2 material are similar to primitive chondrites, its compositional diversity testifies to a very different origin and evolution history than asteroids. Comet Wild 2 does not exist on a continuum with known asteroids. Collisional debris from asteroids is mostly absent in Wild 2, and it likely accreted dust from the outer and inner Solar System (across the putative gap created by a forming Jupiter) before dispersal of the solar nebula. Comets are a diverse set of bodies, and Wild 2 may represent a type of comet that accreted a high fraction of dust processed in the young Solar System.</span></p></div>","PeriodicalId":55973,"journal":{"name":"Chemie Der Erde-Geochemistry","volume":"83 4","pages":"Article 126046"},"PeriodicalIF":2.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemie Der Erde-Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009281923000971","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

NASA's Stardust mission returned rocky material from the coma of comet 81P/Wild 2 (pronounced “Vilt 2”) to Earth for laboratory study on January 15, 2006. Comet Wild 2 contains volatile ices and likely accreted beyond the orbit of Neptune. It was expected that the Wild 2 samples would contain abundant primordial molecular cloud material—interstellar and circumstellar grains. Instead, the interstellar component of Wild 2 was found to be very minor, and nearly all of the returned particles formed in broad and diverse regions of the solar nebula. While some characteristics of the Wild 2 material are similar to primitive chondrites, its compositional diversity testifies to a very different origin and evolution history than asteroids. Comet Wild 2 does not exist on a continuum with known asteroids. Collisional debris from asteroids is mostly absent in Wild 2, and it likely accreted dust from the outer and inner Solar System (across the putative gap created by a forming Jupiter) before dispersal of the solar nebula. Comets are a diverse set of bodies, and Wild 2 may represent a type of comet that accreted a high fraction of dust processed in the young Solar System.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
彗星81P/Wild 2:太阳系狂野青年的记录
2006年1月15日,美国宇航局的星尘任务将81P/Wild 2彗星(读作“Vilt 2”)的彗发中的岩石物质带回地球进行实验室研究。怀尔德2号彗星含有挥发性冰,很可能是在海王星轨道之外被吸积的。预计怀尔德2号样品将含有丰富的原始分子云物质——星际和星周颗粒。相反,怀尔德2号的星际成分被发现非常少,几乎所有返回的粒子都形成于太阳星云广阔而多样的区域。虽然Wild 2物质的某些特征与原始球粒陨石相似,但其成分多样性证明了与小行星截然不同的起源和演化历史。怀尔德2号彗星并不存在于已知小行星的连续体中。来自小行星的碰撞碎片在Wild 2中几乎不存在,它很可能在太阳星云分散之前从太阳系内外(穿过木星形成的假定间隙)聚集了尘埃。彗星是一组多样化的天体,怀尔德2号可能代表了一种彗星,它是由年轻的太阳系中处理的更高比例的尘埃聚集而成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemie Der Erde-Geochemistry
Chemie Der Erde-Geochemistry 地学-地球化学与地球物理
CiteScore
7.10
自引率
0.00%
发文量
40
审稿时长
3.0 months
期刊介绍: GEOCHEMISTRY was founded as Chemie der Erde 1914 in Jena, and, hence, is one of the oldest journals for geochemistry-related topics. GEOCHEMISTRY (formerly Chemie der Erde / Geochemistry) publishes original research papers, short communications, reviews of selected topics, and high-class invited review articles addressed at broad geosciences audience. Publications dealing with interdisciplinary questions are particularly welcome. Young scientists are especially encouraged to submit their work. Contributions will be published exclusively in English. The journal, through very personalized consultation and its worldwide distribution, offers entry into the world of international scientific communication, and promotes interdisciplinary discussion on chemical problems in a broad spectrum of geosciences. The following topics are covered by the expertise of the members of the editorial board (see below): -cosmochemistry, meteoritics- igneous, metamorphic, and sedimentary petrology- volcanology- low & high temperature geochemistry- experimental - theoretical - field related studies- mineralogy - crystallography- environmental geosciences- archaeometry
期刊最新文献
Editorial Board Contrasting fluids and implications for ore genesis in the Jiawula-Chaganbulagen Porphyry Mo-epithermal PbZn metallogenetic system: Evidence from fluid inclusions and H-O-He-Ar isotopes Ediacaran anorogenic alkaline magmatism and wolframite mineralization linked to mantle plume activity in the north Arabian-Nubian Shield (Egypt) A hydrous sub-arc mantle domain within the northeastern Neo-Tethyan ophiolites: Insights from cumulate hornblendites Hydrothermal alteration of accessory minerals (allanite and titanite) in the late Archean Closepet granitoid (Dharwar Craton, India): A TEM study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1