The Niancaowan mafic-ultramafic intrusion is located within the Bayan Obo Rift Zone of central Inner Mongolia. Systematic genetic investigations were conducted in this study to clarify the genetic relationship between the Niancaowan mafic-ultramafic intrusion and known Cu
Ni deposits within the rift zone, as well as to assess the comparability of their mineralization potential. Through integrated petrographic observations, high-precision geochronological dating, whole-rock geochemical analyses, and zircon Hf isotope tracing, the research specifically focused on elucidating the magmatic source characteristics, rock-forming timing, and magmatic evolutionary processes of the intrusion. The Niancaowan mafic-ultramafic intrusion is predominantly composed of hornblende gabbro and gabbro-diabase. LA-ICP-MS zircon U
Pb dating reveals that the hornblende gabbro crystallized during the Early Permian (273.2 ± 3.5 Ma), which demonstrates temporal synchronicity with the emplacement ages of other mafic-ultramafic intrusions within the central-western Inner Mongolia rift system. Geochemical tracers further disclose significant zircon Hf isotopic heterogeneity, indicating that the parental magma was derived from partial melting of a lithospheric mantle source and underwent contamination by lower crustal materials during its ascent. Comparative analysis indicates that the zircon Hf isotopic compositions of the Niancaowan intrusion (εHf(t) = −17.0 to +1.4) are similar to those of typical regional intrusions such as the Wulantaolegai and Huanghuatan intrusions, revealing that crustal contamination was prevalent during the emplacement of mafic-ultramafic magmatic systems within the Bayan Obo Rift Zone. The incorporation of such crust-derived components may be controlled by the melting or assimilation processes of ancient basement rocks in the extensional setting of the rift zone. The petrological characteristics and quantitative modeling results indicate that the Niancaowan intrusion experienced relatively weak crustal contamination (4 %–8 %). If sulfide mineralization were to occur in this intrusion, it would primarily depend on deep-seated magmatic differentiation. Comparative studies between the Niancaowan intrusion and other intrusive bodies within the Bayan Obo Rift Zone reveal that the mineral exploration potential of mafic-ultramafic intrusions in the Bayan Obo Rift Zone should not be overlooked. Particular attention should be given to highly contaminated mafic-ultramafic intrusion clusters within the rift zone and multi-stage tectonic-magmatic convergence nodes.
扫码关注我们
求助内容:
应助结果提醒方式:
