E-values, Multiple Testing and Beyond

Guanxun Li, Xianyang Zhang
{"title":"E-values, Multiple Testing and Beyond","authors":"Guanxun Li, Xianyang Zhang","doi":"arxiv-2312.02905","DOIUrl":null,"url":null,"abstract":"We discover a connection between the Benjamini-Hochberg (BH) procedure and\nthe recently proposed e-BH procedure [Wang and Ramdas, 2022] with a suitably\ndefined set of e-values. This insight extends to a generalized version of the\nBH procedure and the model-free multiple testing procedure in Barber and\nCand\\`es [2015] (BC) with a general form of rejection rules. The connection\nprovides an effective way of developing new multiple testing procedures by\naggregating or assembling e-values resulting from the BH and BC procedures and\ntheir use in different subsets of the data. In particular, we propose new\nmultiple testing methodologies in three applications, including a hybrid\napproach that integrates the BH and BC procedures, a multiple testing procedure\naimed at ensuring a new notion of fairness by controlling both the group-wise\nand overall false discovery rates (FDR), and a structure adaptive multiple\ntesting procedure that can incorporate external covariate information to boost\ndetection power. One notable feature of the proposed methods is that we use a\ndata-dependent approach for assigning weights to e-values, significantly\nenhancing the efficiency of the resulting e-BH procedure. The construction of\nthe weights is non-trivial and is motivated by the leave-one-out analysis for\nthe BH and BC procedures. In theory, we prove that the proposed e-BH procedures\nwith data-dependent weights in the three applications ensure finite sample FDR\ncontrol. Furthermore, we demonstrate the efficiency of the proposed methods\nthrough numerical studies in the three applications.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"93 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.02905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We discover a connection between the Benjamini-Hochberg (BH) procedure and the recently proposed e-BH procedure [Wang and Ramdas, 2022] with a suitably defined set of e-values. This insight extends to a generalized version of the BH procedure and the model-free multiple testing procedure in Barber and Cand\`es [2015] (BC) with a general form of rejection rules. The connection provides an effective way of developing new multiple testing procedures by aggregating or assembling e-values resulting from the BH and BC procedures and their use in different subsets of the data. In particular, we propose new multiple testing methodologies in three applications, including a hybrid approach that integrates the BH and BC procedures, a multiple testing procedure aimed at ensuring a new notion of fairness by controlling both the group-wise and overall false discovery rates (FDR), and a structure adaptive multiple testing procedure that can incorporate external covariate information to boost detection power. One notable feature of the proposed methods is that we use a data-dependent approach for assigning weights to e-values, significantly enhancing the efficiency of the resulting e-BH procedure. The construction of the weights is non-trivial and is motivated by the leave-one-out analysis for the BH and BC procedures. In theory, we prove that the proposed e-BH procedures with data-dependent weights in the three applications ensure finite sample FDR control. Furthermore, we demonstrate the efficiency of the proposed methods through numerical studies in the three applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
e值,多重测试及其他
我们发现Benjamini-Hochberg (BH)程序和最近提出的e-BH程序之间的联系[Wang和Ramdas, 2022]具有适当定义的e值集。这一见解扩展到Barber and and ' es [2015] (BC)中具有一般形式的拒绝规则的bh程序和无模型多重测试程序的通用版本。该连接提供了一种有效的方法,通过聚合或组装由BH和BC程序产生的e值及其在不同数据子集中的使用来开发新的多个测试程序。特别地,我们在三个应用中提出了新的多重测试方法,包括集成BH和BC程序的混合方法,旨在通过控制群体智慧和整体错误发现率(FDR)来确保新的公平性概念的多重测试程序,以及可以结合外部协变量信息以提高检测能力的结构自适应多重测试程序。所提出方法的一个显著特征是,我们使用数据依赖的方法为e值分配权重,显著提高了所得e-BH过程的效率。权重的构造是非平凡的,其动机是对BH和BC过程的留一分析。理论上,我们证明了在这三种应用中所提出的具有数据相关权值的e-BH过程确保了有限样本fdr控制。此外,我们通过三个应用的数值研究证明了所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Precision-based designs for sequential randomized experiments Strang Splitting for Parametric Inference in Second-order Stochastic Differential Equations Stability of a Generalized Debiased Lasso with Applications to Resampling-Based Variable Selection Tuning parameter selection in econometrics Limiting Behavior of Maxima under Dependence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1