Tuning parameter selection in econometrics

Denis Chetverikov
{"title":"Tuning parameter selection in econometrics","authors":"Denis Chetverikov","doi":"arxiv-2405.03021","DOIUrl":null,"url":null,"abstract":"I review some of the main methods for selecting tuning parameters in\nnonparametric and $\\ell_1$-penalized estimation. For the nonparametric\nestimation, I consider the methods of Mallows, Stein, Lepski, cross-validation,\npenalization, and aggregation in the context of series estimation. For the\n$\\ell_1$-penalized estimation, I consider the methods based on the theory of\nself-normalized moderate deviations, bootstrap, Stein's unbiased risk\nestimation, and cross-validation in the context of Lasso estimation. I explain\nthe intuition behind each of the methods and discuss their comparative\nadvantages. I also give some extensions.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.03021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

I review some of the main methods for selecting tuning parameters in nonparametric and $\ell_1$-penalized estimation. For the nonparametric estimation, I consider the methods of Mallows, Stein, Lepski, cross-validation, penalization, and aggregation in the context of series estimation. For the $\ell_1$-penalized estimation, I consider the methods based on the theory of self-normalized moderate deviations, bootstrap, Stein's unbiased risk estimation, and cross-validation in the context of Lasso estimation. I explain the intuition behind each of the methods and discuss their comparative advantages. I also give some extensions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
调整计量经济学中的参数选择
我回顾了在非参数估计和 $\ell_1$ 惩罚估计中选择调整参数的一些主要方法。对于非参数估计,我考虑了 Mallows、Stein、Lepski、交叉验证、惩罚以及序列估计中的聚合等方法。对于$ell_1$-惩罚估计,我考虑了基于自归一化中等偏差理论的方法、bootstrap、Stein 的无偏风险估计以及 Lasso 估计背景下的交叉验证。我解释了每种方法背后的直觉,并讨论了它们的比较优势。我还给出了一些扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Precision-based designs for sequential randomized experiments Strang Splitting for Parametric Inference in Second-order Stochastic Differential Equations Stability of a Generalized Debiased Lasso with Applications to Resampling-Based Variable Selection Tuning parameter selection in econometrics Limiting Behavior of Maxima under Dependence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1