Global Convergence of Online Identification for Mixed Linear Regression

Yujing Liu, Zhixin Liu, Lei Guo
{"title":"Global Convergence of Online Identification for Mixed Linear Regression","authors":"Yujing Liu, Zhixin Liu, Lei Guo","doi":"arxiv-2311.18506","DOIUrl":null,"url":null,"abstract":"Mixed linear regression (MLR) is a powerful model for characterizing\nnonlinear relationships by utilizing a mixture of linear regression sub-models.\nThe identification of MLR is a fundamental problem, where most of the existing\nresults focus on offline algorithms, rely on independent and identically\ndistributed (i.i.d) data assumptions, and provide local convergence results\nonly. This paper investigates the online identification and data clustering\nproblems for two basic classes of MLRs, by introducing two corresponding new\nonline identification algorithms based on the expectation-maximization (EM)\nprinciple. It is shown that both algorithms will converge globally without\nresorting to the traditional i.i.d data assumptions. The main challenge in our\ninvestigation lies in the fact that the gradient of the maximum likelihood\nfunction does not have a unique zero, and a key step in our analysis is to\nestablish the stability of the corresponding differential equation in order to\napply the celebrated Ljung's ODE method. It is also shown that the\nwithin-cluster error and the probability that the new data is categorized into\nthe correct cluster are asymptotically the same as those in the case of known\nparameters. Finally, numerical simulations are provided to verify the\neffectiveness of our online algorithms.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"84 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2311.18506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mixed linear regression (MLR) is a powerful model for characterizing nonlinear relationships by utilizing a mixture of linear regression sub-models. The identification of MLR is a fundamental problem, where most of the existing results focus on offline algorithms, rely on independent and identically distributed (i.i.d) data assumptions, and provide local convergence results only. This paper investigates the online identification and data clustering problems for two basic classes of MLRs, by introducing two corresponding new online identification algorithms based on the expectation-maximization (EM) principle. It is shown that both algorithms will converge globally without resorting to the traditional i.i.d data assumptions. The main challenge in our investigation lies in the fact that the gradient of the maximum likelihood function does not have a unique zero, and a key step in our analysis is to establish the stability of the corresponding differential equation in order to apply the celebrated Ljung's ODE method. It is also shown that the within-cluster error and the probability that the new data is categorized into the correct cluster are asymptotically the same as those in the case of known parameters. Finally, numerical simulations are provided to verify the effectiveness of our online algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合线性回归在线辨识的全局收敛性
混合线性回归(MLR)是一种利用混合线性回归子模型来表征非线性关系的强大模型。MLR的识别是一个基本问题,现有的大多数结果都集中在离线算法上,依赖于独立和同分布(i.i.d)数据假设,并且只提供局部收敛结果。本文通过引入两种基于期望最大化(EM)原理的在线识别算法,研究了两类基本mlr的在线识别和数据聚类问题。结果表明,两种算法都能在全局收敛,而不需要采用传统的id数据假设。我们研究的主要挑战在于最大似然函数的梯度没有唯一的零,而我们分析的关键步骤是建立相应微分方程的稳定性,以便应用著名的Ljung的ODE方法。研究还表明,聚类内误差和新数据被分类到正确聚类的概率与已知参数情况下的误差渐近相同。最后,通过数值仿真验证了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Precision-based designs for sequential randomized experiments Strang Splitting for Parametric Inference in Second-order Stochastic Differential Equations Stability of a Generalized Debiased Lasso with Applications to Resampling-Based Variable Selection Tuning parameter selection in econometrics Limiting Behavior of Maxima under Dependence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1