Asymptotic Efficiency for Fractional Brownian Motion with general noise

Grégoire Szymanski, Tetsuya Takabatake
{"title":"Asymptotic Efficiency for Fractional Brownian Motion with general noise","authors":"Grégoire Szymanski, Tetsuya Takabatake","doi":"arxiv-2311.18669","DOIUrl":null,"url":null,"abstract":"We investigate the Local Asymptotic Property for fractional Brownian models\nbased on discrete observations contaminated by a Gaussian moving average\nprocess. We consider both situations of low and high-frequency observations in\na unified setup and we show that the convergence rate $n^{1/2} (\\nu_n\n\\Delta_n^{-H})^{-1/(2H+2K+1)}$ is optimal for estimating the Hurst index $H$,\nwhere $\\nu_n$ is the noise intensity, $\\Delta_n$ is the sampling frequency and\n$K$ is the moving average order. We also derive asymptotically efficient\nvariances and we build an estimator achieving this convergence rate and\nvariance. This theoretical analysis is backed up by a comprehensive numerical\nanalysis of the estimation procedure that illustrates in particular its\neffectiveness for finite samples.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"84 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2311.18669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the Local Asymptotic Property for fractional Brownian models based on discrete observations contaminated by a Gaussian moving average process. We consider both situations of low and high-frequency observations in a unified setup and we show that the convergence rate $n^{1/2} (\nu_n \Delta_n^{-H})^{-1/(2H+2K+1)}$ is optimal for estimating the Hurst index $H$, where $\nu_n$ is the noise intensity, $\Delta_n$ is the sampling frequency and $K$ is the moving average order. We also derive asymptotically efficient variances and we build an estimator achieving this convergence rate and variance. This theoretical analysis is backed up by a comprehensive numerical analysis of the estimation procedure that illustrates in particular its effectiveness for finite samples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一般噪声下分数阶布朗运动的渐近效率
我们研究了基于高斯移动平均过程污染的离散观测的分数阶布朗模型的局部渐近性质。我们在统一设置中考虑了低频率和高频观测的两种情况,并表明收敛速率$n^{1/2} (\nu_n\Delta_n^{-H})^{-1/(2H+2K+1)}$对于估计Hurst指数$H$是最优的,其中$\nu_n$是噪声强度,$\Delta_n$是采样频率,$K$是移动平均阶数。我们还推导了渐近有效方差,并建立了一个估计器来实现这种收敛速率和方差。这一理论分析得到了对估计过程的全面数值分析的支持,该分析特别说明了它对有限样本的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Precision-based designs for sequential randomized experiments Strang Splitting for Parametric Inference in Second-order Stochastic Differential Equations Stability of a Generalized Debiased Lasso with Applications to Resampling-Based Variable Selection Tuning parameter selection in econometrics Limiting Behavior of Maxima under Dependence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1