New News is Bad News

Paul Glasserman, Harry Mamaysky, Jimmy Qin
{"title":"New News is Bad News","authors":"Paul Glasserman, Harry Mamaysky, Jimmy Qin","doi":"arxiv-2309.05560","DOIUrl":null,"url":null,"abstract":"An increase in the novelty of news predicts negative stock market returns and\nnegative macroeconomic outcomes over the next year. We quantify news novelty -\nchanges in the distribution of news text - through an entropy measure,\ncalculated using a recurrent neural network applied to a large news corpus.\nEntropy is a better out-of-sample predictor of market returns than a collection\nof standard measures. Cross-sectional entropy exposure carries a negative risk\npremium, suggesting that assets that positively covary with entropy hedge the\naggregate risk associated with shifting news language. Entropy risk cannot be\nexplained by existing long-short factors.","PeriodicalId":501372,"journal":{"name":"arXiv - QuantFin - General Finance","volume":"87 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - General Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2309.05560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An increase in the novelty of news predicts negative stock market returns and negative macroeconomic outcomes over the next year. We quantify news novelty - changes in the distribution of news text - through an entropy measure, calculated using a recurrent neural network applied to a large news corpus. Entropy is a better out-of-sample predictor of market returns than a collection of standard measures. Cross-sectional entropy exposure carries a negative risk premium, suggesting that assets that positively covary with entropy hedge the aggregate risk associated with shifting news language. Entropy risk cannot be explained by existing long-short factors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新消息就是坏消息
新闻新颖性的增加预示着明年股市的负回报和负面的宏观经济结果。我们量化新闻新颖性-新闻文本分布的变化-通过熵度量,使用应用于大型新闻语料库的递归神经网络计算。熵比一组标准指标更能预测市场回报。横截面熵暴露具有负风险溢价,表明与熵正协变的资产对冲了与新闻语言变化相关的总风险。熵风险不能用现有的多空因素来解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Information Asymmetry Index: The View of Market Analysts Market Failures of Carbon Trading Hydrogen Development in China and the EU: A Recommended Tian Ji's Horse Racing Strategy Applying the Nash Bargaining Solution for a Reasonable Royalty II Auction theory and demography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1