{"title":"Tunable infrared surface phonon–plasmon coupling in graphene-integrated polar semiconductor heterostructure","authors":"Ye Zhang, Xiangyu Gao, Hui Xia, Junjie Mei, Zihui Cui, Jianjun Lai, Changhong Chen","doi":"10.1063/5.0169414","DOIUrl":null,"url":null,"abstract":"Within Reststrahlen bands of polar semiconductors, surface phonon–plasmon coupling is of great interest in infrared nanophotonics. Here, we demonstrate an active long-wavelength infrared device of graphene integrated with an AlN/SiC polar heterostructure. As a low-loss dielectric design, the subwavelength structure device takes advantage of interfacial photogating effect on electrostatic doping of the graphene and the interfaced SiC, and the tunable spectral behavior is originated from the hybridization of the doping-dependent surface phonon–plasmon resonances. This finding provides a steady-state manipulating method to the surface modes for the low-loss nanophotonic devices on SiC platform, and the graphene Fermi level tunable to cross the Dirac point in a steady response even makes the intrinsic graphene photodetectors feasible.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"26 2","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0169414","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Within Reststrahlen bands of polar semiconductors, surface phonon–plasmon coupling is of great interest in infrared nanophotonics. Here, we demonstrate an active long-wavelength infrared device of graphene integrated with an AlN/SiC polar heterostructure. As a low-loss dielectric design, the subwavelength structure device takes advantage of interfacial photogating effect on electrostatic doping of the graphene and the interfaced SiC, and the tunable spectral behavior is originated from the hybridization of the doping-dependent surface phonon–plasmon resonances. This finding provides a steady-state manipulating method to the surface modes for the low-loss nanophotonic devices on SiC platform, and the graphene Fermi level tunable to cross the Dirac point in a steady response even makes the intrinsic graphene photodetectors feasible.
APL PhotonicsPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
10.30
自引率
3.60%
发文量
107
审稿时长
19 weeks
期刊介绍:
APL Photonics is the new dedicated home for open access multidisciplinary research from and for the photonics community. The journal publishes fundamental and applied results that significantly advance the knowledge in photonics across physics, chemistry, biology and materials science.