{"title":"Practical guideline to efficiently detect insurance fraud in the era of machine learning: A household insurance case","authors":"Denisa Banulescu-Radu, Meryem Yankol-Schalck","doi":"10.1111/jori.12452","DOIUrl":null,"url":null,"abstract":"<p>Identifying insurance fraud is a difficult task due to the complex nature of the fraud itself, the diversity of techniques employed, the rarity of fraud cases observed in data sets, and the relatively limited allocation of human, financial, and time resources to carry out investigations. The aim of this paper is to provide a clean and well structured study on modeling fraud on home insurance contracts, using real French data from 2013 to 2017. Several methods are developed to identify risk factors and unusual customer behaviors. Traditional econometric models as well as new machine-learning algorithms with good predictive performance and high operational efficiency are tested, while maintaining method interpretability. Each methodology is evaluated on the basis of adequate performance measures and the issue of imbalanced databases is also addressed. Finally, specific methods are applied to interpret the results of the machine-learning methods.</p>","PeriodicalId":51440,"journal":{"name":"Journal of Risk and Insurance","volume":"91 4","pages":"867-913"},"PeriodicalIF":2.1000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Risk and Insurance","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jori.12452","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0
Abstract
Identifying insurance fraud is a difficult task due to the complex nature of the fraud itself, the diversity of techniques employed, the rarity of fraud cases observed in data sets, and the relatively limited allocation of human, financial, and time resources to carry out investigations. The aim of this paper is to provide a clean and well structured study on modeling fraud on home insurance contracts, using real French data from 2013 to 2017. Several methods are developed to identify risk factors and unusual customer behaviors. Traditional econometric models as well as new machine-learning algorithms with good predictive performance and high operational efficiency are tested, while maintaining method interpretability. Each methodology is evaluated on the basis of adequate performance measures and the issue of imbalanced databases is also addressed. Finally, specific methods are applied to interpret the results of the machine-learning methods.
期刊介绍:
The Journal of Risk and Insurance (JRI) is the premier outlet for theoretical and empirical research on the topics of insurance economics and risk management. Research in the JRI informs practice, policy-making, and regulation in insurance markets as well as corporate and household risk management. JRI is the flagship journal for the American Risk and Insurance Association, and is currently indexed by the American Economic Association’s Economic Literature Index, RePEc, the Social Sciences Citation Index, and others. Issues of the Journal of Risk and Insurance, from volume one to volume 82 (2015), are available online through JSTOR . Recent issues of JRI are available through Wiley Online Library. In addition to the research areas of traditional strength for the JRI, the editorial team highlights below specific areas for special focus in the near term, due to their current relevance for the field.