{"title":"Cancer-targeting carbon quantum dots synthesized by plasma electrochemical method for red-light-activated photodynamic therapy","authors":"Ruoyu Wang, Jiayan Shen, Yupengxue Ma, Xiaoru Qin, Xing Qin, Feng Yang, Kostya (Ken) Ostrikov, Qing Zhang, Jie He, Xiaoxia Zhong","doi":"10.1002/ppap.202300174","DOIUrl":null,"url":null,"abstract":"Cancer-targeting carbon quantum dots (CQDs) with red-light absorption/emission featuring inherent biological functionality and deep biological penetration depth are promising for biomedical applications. However, traditional high-temperature and high-pressure synthesis processes result in unpredictable functionalities and uncontrollable optical properties due to the functional group loss. Here, plasma electrochemical treatment is introduced to overcome this issue. The synthesized CQDs in this work have excellent folate receptor cancer-targeting ability, red-light absorption/emission, and pronounced photodynamic therapy effect. The CQDs produced by the plasma electrochemical method preserve most of the functional groups from precursors, thus making them to fully inherit the bio-functionality and photophysical properties of precursors. This work opens new opportunities for plasma-based processes to controllably synthesize functionalized CQDs for diverse biomedical and environmental applications.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"10 3","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Processes and Polymers","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/ppap.202300174","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer-targeting carbon quantum dots (CQDs) with red-light absorption/emission featuring inherent biological functionality and deep biological penetration depth are promising for biomedical applications. However, traditional high-temperature and high-pressure synthesis processes result in unpredictable functionalities and uncontrollable optical properties due to the functional group loss. Here, plasma electrochemical treatment is introduced to overcome this issue. The synthesized CQDs in this work have excellent folate receptor cancer-targeting ability, red-light absorption/emission, and pronounced photodynamic therapy effect. The CQDs produced by the plasma electrochemical method preserve most of the functional groups from precursors, thus making them to fully inherit the bio-functionality and photophysical properties of precursors. This work opens new opportunities for plasma-based processes to controllably synthesize functionalized CQDs for diverse biomedical and environmental applications.
期刊介绍:
Plasma Processes & Polymers focuses on the interdisciplinary field of low temperature plasma science, covering both experimental and theoretical aspects of fundamental and applied research in materials science, physics, chemistry and engineering in the area of plasma sources and plasma-based treatments.