{"title":"Harnessing highly efficient triboelectric sensors and machine learning for self-powered intelligent security applications","authors":"Hyun Sik Shin, Su Bin Choi, Jong-Woong Kim","doi":"10.1016/j.mtadv.2023.100426","DOIUrl":null,"url":null,"abstract":"<p>In the contemporary epoch, distinguished by a transition from the internet-of-things (IoT) to the artificial intelligence of things (AIoT), individual electronic appliances necessitate inherent power-generation, independence from internet connectivity, and an imbued degree of intellect. Devices governed by pressure or strain sensors particularly demand such attributes. Responding to this technological imperative, our study endeavored to conceive an intelligent door security apparatus grounded on the universally adopted numerical input system. Despite the commercialization of identification systems such as fingerprint, iris, or facial recognition, these mechanisms suffer from susceptibility to a variety of functional aberrations. Consequently, our investigation concentrated on a security system predicated on numerical input. This necessitated the formulation of a swift, self-powered pressure sensor characterized by sensitivity to minute pressure changes. As such, we engineered a triboelectric pressure sensor incorporating a composite of Ti<sub>3</sub>C<sub>2</sub>-based MXene and polydimethylsiloxane (PDMS) as the electronegative stratum, and Nylon functioning as the electropositive layer. Addressing the sensor's intrinsic deficiency in sensitivity to pressure, we augmented the MXene-PDMS composite's surface with an out-of-plane wavy structure, and utilized a Nylon stratum composed of nanofibers, thereby amplifying the contact area under pressurized conditions. This meticulously developed sensor displayed a sensitivity metric of 0.604 kPa<sup>−1</sup> at 15 kPa, and notably, the swiftest response times recorded amongst triboelectric pressure sensors to date. Post attachment of the sensor to a numeric keypad (ranging from 0 to 9), we meticulously measured the signal alterations contingent on each key press, resulting in a comprehensive dataset. Employing a multitude of machine learning algorithms, we realized an exemplary degree of precision in both training and testing phases. The pragmatic implications of this work are noteworthy. Not only does our technology facilitate the unlocking of a door by entering the correct numerical code, but it is capable of recognizing distinct triboelectric signal patterns, corresponding to the specific manner of key entry by an authorized user, offering an additional dimension of security.</p>","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"10 10","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtadv.2023.100426","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the contemporary epoch, distinguished by a transition from the internet-of-things (IoT) to the artificial intelligence of things (AIoT), individual electronic appliances necessitate inherent power-generation, independence from internet connectivity, and an imbued degree of intellect. Devices governed by pressure or strain sensors particularly demand such attributes. Responding to this technological imperative, our study endeavored to conceive an intelligent door security apparatus grounded on the universally adopted numerical input system. Despite the commercialization of identification systems such as fingerprint, iris, or facial recognition, these mechanisms suffer from susceptibility to a variety of functional aberrations. Consequently, our investigation concentrated on a security system predicated on numerical input. This necessitated the formulation of a swift, self-powered pressure sensor characterized by sensitivity to minute pressure changes. As such, we engineered a triboelectric pressure sensor incorporating a composite of Ti3C2-based MXene and polydimethylsiloxane (PDMS) as the electronegative stratum, and Nylon functioning as the electropositive layer. Addressing the sensor's intrinsic deficiency in sensitivity to pressure, we augmented the MXene-PDMS composite's surface with an out-of-plane wavy structure, and utilized a Nylon stratum composed of nanofibers, thereby amplifying the contact area under pressurized conditions. This meticulously developed sensor displayed a sensitivity metric of 0.604 kPa−1 at 15 kPa, and notably, the swiftest response times recorded amongst triboelectric pressure sensors to date. Post attachment of the sensor to a numeric keypad (ranging from 0 to 9), we meticulously measured the signal alterations contingent on each key press, resulting in a comprehensive dataset. Employing a multitude of machine learning algorithms, we realized an exemplary degree of precision in both training and testing phases. The pragmatic implications of this work are noteworthy. Not only does our technology facilitate the unlocking of a door by entering the correct numerical code, but it is capable of recognizing distinct triboelectric signal patterns, corresponding to the specific manner of key entry by an authorized user, offering an additional dimension of security.
期刊介绍:
Materials Today Advances is a multi-disciplinary, open access journal that aims to connect different communities within materials science. It covers all aspects of materials science and related disciplines, including fundamental and applied research. The focus is on studies with broad impact that can cross traditional subject boundaries. The journal welcomes the submissions of articles at the forefront of materials science, advancing the field. It is part of the Materials Today family and offers authors rigorous peer review, rapid decisions, and high visibility.