Maximum Likelihood Estimation is All You Need for Well-Specified Covariate Shift

Jiawei Ge, Shange Tang, Jianqing Fan, Cong Ma, Chi Jin
{"title":"Maximum Likelihood Estimation is All You Need for Well-Specified Covariate Shift","authors":"Jiawei Ge, Shange Tang, Jianqing Fan, Cong Ma, Chi Jin","doi":"arxiv-2311.15961","DOIUrl":null,"url":null,"abstract":"A key challenge of modern machine learning systems is to achieve\nOut-of-Distribution (OOD) generalization -- generalizing to target data whose\ndistribution differs from that of source data. Despite its significant\nimportance, the fundamental question of ``what are the most effective\nalgorithms for OOD generalization'' remains open even under the standard\nsetting of covariate shift. This paper addresses this fundamental question by\nproving that, surprisingly, classical Maximum Likelihood Estimation (MLE)\npurely using source data (without any modification) achieves the minimax\noptimality for covariate shift under the well-specified setting. That is, no\nalgorithm performs better than MLE in this setting (up to a constant factor),\njustifying MLE is all you need. Our result holds for a very rich class of\nparametric models, and does not require any boundedness condition on the\ndensity ratio. We illustrate the wide applicability of our framework by\ninstantiating it to three concrete examples -- linear regression, logistic\nregression, and phase retrieval. This paper further complement the study by\nproving that, under the misspecified setting, MLE is no longer the optimal\nchoice, whereas Maximum Weighted Likelihood Estimator (MWLE) emerges as minimax\noptimal in certain scenarios.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2311.15961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A key challenge of modern machine learning systems is to achieve Out-of-Distribution (OOD) generalization -- generalizing to target data whose distribution differs from that of source data. Despite its significant importance, the fundamental question of ``what are the most effective algorithms for OOD generalization'' remains open even under the standard setting of covariate shift. This paper addresses this fundamental question by proving that, surprisingly, classical Maximum Likelihood Estimation (MLE) purely using source data (without any modification) achieves the minimax optimality for covariate shift under the well-specified setting. That is, no algorithm performs better than MLE in this setting (up to a constant factor), justifying MLE is all you need. Our result holds for a very rich class of parametric models, and does not require any boundedness condition on the density ratio. We illustrate the wide applicability of our framework by instantiating it to three concrete examples -- linear regression, logistic regression, and phase retrieval. This paper further complement the study by proving that, under the misspecified setting, MLE is no longer the optimal choice, whereas Maximum Weighted Likelihood Estimator (MWLE) emerges as minimax optimal in certain scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
最大似然估计是所有你需要的良好指定协变量移位
现代机器学习系统的一个关键挑战是实现out -of- distribution (OOD)泛化——泛化到分布与源数据不同的目标数据。尽管具有重要意义,但即使在协变量移位的标准设定下,“什么是最有效的OOD泛化算法”这一基本问题仍然存在。本文通过证明,令人惊讶的是,纯粹使用源数据(未经任何修改)的经典最大似然估计(MLE)在良好指定的设置下实现了协变量移位的最小最大最优性,从而解决了这个基本问题。也就是说,在这种情况下,没有算法比MLE表现得更好(直到一个常数因子),证明MLE是您所需要的。我们的结果适用于一类非常丰富的参数模型,并且不需要密度比的有界条件。我们通过实例化三个具体的例子来说明我们的框架的广泛适用性——线性回归、逻辑回归和相位检索。本文进一步证明了在错误设定下,最大加权似然估计(MWLE)不再是最优选择,而在某些情况下,最大加权似然估计(MWLE)出现为最小最大最优。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Precision-based designs for sequential randomized experiments Strang Splitting for Parametric Inference in Second-order Stochastic Differential Equations Stability of a Generalized Debiased Lasso with Applications to Resampling-Based Variable Selection Tuning parameter selection in econometrics Limiting Behavior of Maxima under Dependence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1