{"title":"Boosting Cache Performance by Access Time Measurements","authors":"Gil Einziger, Omri Himelbrand, Erez Waisbard","doi":"https://dl.acm.org/doi/10.1145/3572778","DOIUrl":null,"url":null,"abstract":"<p>Most modern systems utilize caches to reduce the average data access time and optimize their performance. <span>Recently proposed policies implicitly</span> assume uniform access times, but variable access times naturally appear in domains such as storage, web search, and DNS resolution.</p><p>Our work measures the access times for various items and exploits variations in access times as an additional signal for caching algorithms. Using such a signal, we introduce adaptive access time-aware cache policies that consistently improve the average access time compared with the best alternative in diverse workloads. Our adaptive algorithm attains an average access time reduction of up to 46% in storage workloads, up to 16% in web searches, and 8.4% on average when considering all experiments in our study.</p>","PeriodicalId":49113,"journal":{"name":"ACM Transactions on Storage","volume":"2011 11","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Storage","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3572778","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Most modern systems utilize caches to reduce the average data access time and optimize their performance. Recently proposed policies implicitly assume uniform access times, but variable access times naturally appear in domains such as storage, web search, and DNS resolution.
Our work measures the access times for various items and exploits variations in access times as an additional signal for caching algorithms. Using such a signal, we introduce adaptive access time-aware cache policies that consistently improve the average access time compared with the best alternative in diverse workloads. Our adaptive algorithm attains an average access time reduction of up to 46% in storage workloads, up to 16% in web searches, and 8.4% on average when considering all experiments in our study.
期刊介绍:
The ACM Transactions on Storage (TOS) is a new journal with an intent to publish original archival papers in the area of storage and closely related disciplines. Articles that appear in TOS will tend either to present new techniques and concepts or to report novel experiences and experiments with practical systems. Storage is a broad and multidisciplinary area that comprises of network protocols, resource management, data backup, replication, recovery, devices, security, and theory of data coding, densities, and low-power. Potential synergies among these fields are expected to open up new research directions.