Reliability Evaluation of Erasure-coded Storage Systems with Latent Errors

IF 2.1 3区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE ACM Transactions on Storage Pub Date : 2023-01-11 DOI:https://dl.acm.org/doi/10.1145/3568313
Ilias Iliadis
{"title":"Reliability Evaluation of Erasure-coded Storage Systems with Latent Errors","authors":"Ilias Iliadis","doi":"https://dl.acm.org/doi/10.1145/3568313","DOIUrl":null,"url":null,"abstract":"<p>Large-scale storage systems employ erasure-coding redundancy schemes to protect against device failures. The adverse effect of latent sector errors on the Mean Time to Data Loss (MTTDL) and the Expected Annual Fraction of Data Loss (EAFDL) reliability metrics is evaluated. A theoretical model capturing the effect of latent errors and device failures is developed, and closed-form expressions for the metrics of interest are derived. The MTTDL and EAFDL of erasure-coded systems are obtained analytically for (i) the entire range of bit error rates; (ii) the symmetric, clustered, and declustered data placement schemes; and (iii) arbitrary device failure and rebuild time distributions under network rebuild bandwidth constraints. The range of error rates that deteriorate system reliability is derived analytically. For realistic values of sector error rates, the results obtained demonstrate that MTTDL degrades, whereas, for moderate erasure codes, EAFDL remains practically unaffected. It is demonstrated that, in the range of typical sector error rates and for very powerful erasure codes, EAFDL degrades as well. It is also shown that the declustered data placement scheme offers superior reliability.</p>","PeriodicalId":49113,"journal":{"name":"ACM Transactions on Storage","volume":"30 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Storage","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3568313","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Large-scale storage systems employ erasure-coding redundancy schemes to protect against device failures. The adverse effect of latent sector errors on the Mean Time to Data Loss (MTTDL) and the Expected Annual Fraction of Data Loss (EAFDL) reliability metrics is evaluated. A theoretical model capturing the effect of latent errors and device failures is developed, and closed-form expressions for the metrics of interest are derived. The MTTDL and EAFDL of erasure-coded systems are obtained analytically for (i) the entire range of bit error rates; (ii) the symmetric, clustered, and declustered data placement schemes; and (iii) arbitrary device failure and rebuild time distributions under network rebuild bandwidth constraints. The range of error rates that deteriorate system reliability is derived analytically. For realistic values of sector error rates, the results obtained demonstrate that MTTDL degrades, whereas, for moderate erasure codes, EAFDL remains practically unaffected. It is demonstrated that, in the range of typical sector error rates and for very powerful erasure codes, EAFDL degrades as well. It is also shown that the declustered data placement scheme offers superior reliability.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带有潜在错误的擦除编码存储系统可靠性评估
大规模存储系统采用erasure-coding冗余机制来防止设备故障。潜在扇区错误对平均数据丢失时间(MTTDL)和数据丢失预期年分数(EAFDL)可靠性指标的不利影响进行了评估。一个理论模型捕捉潜在的错误和设备故障的影响,并为感兴趣的度量导出了封闭形式的表达式。对擦除编码系统的MTTDL和EAFDL进行分析,得到(i)误码率的整个范围;(ii)对称、聚类和非聚类数据放置方案;(iii)在网络重构带宽约束下的任意设备故障和重构时间分布。导出了影响系统可靠性的误差率范围。对于扇区错误率的实际值,获得的结果表明MTTDL会降级,而对于中等擦除码,EAFDL实际上不受影响。结果表明,在典型扇区错误率范围内,对于非常强大的擦除码,EAFDL也会退化。实验还表明,这种分散的数据放置方案具有较高的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Transactions on Storage
ACM Transactions on Storage COMPUTER SCIENCE, HARDWARE & ARCHITECTURE-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
4.20
自引率
5.90%
发文量
33
审稿时长
>12 weeks
期刊介绍: The ACM Transactions on Storage (TOS) is a new journal with an intent to publish original archival papers in the area of storage and closely related disciplines. Articles that appear in TOS will tend either to present new techniques and concepts or to report novel experiences and experiments with practical systems. Storage is a broad and multidisciplinary area that comprises of network protocols, resource management, data backup, replication, recovery, devices, security, and theory of data coding, densities, and low-power. Potential synergies among these fields are expected to open up new research directions.
期刊最新文献
LVMT: An Efficient Authenticated Storage for Blockchain The Design of Fast Delta Encoding for Delta Compression Based Storage Systems A Memory-Disaggregated Radix Tree Fastmove: A Comprehensive Study of On-Chip DMA and its Demonstration for Accelerating Data Movement in NVM-based Storage Systems FSDedup: Feature-Aware and Selective Deduplication for Improving Performance of Encrypted Non-Volatile Main Memory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1