{"title":"A Universal SMR-aware Cache Framework with Deep Optimization for DM-SMR and HM-SMR Disks","authors":"Diansen Sun, Ruixiong Tan, Yunpeng Chai","doi":"https://dl.acm.org/doi/10.1145/3588442","DOIUrl":null,"url":null,"abstract":"<p>To satisfy the enormous storage capacities required for big data, data centers have been adopting high-density shingled magnetic recording (SMR) disks. However, the weak fine-grained random write performance of SMR disks caused by their inherent write amplification and unbalanced read–write performance poses a severe challenge. Many studies have proposed solid-state drive (SSD) cache systems to address this issue. However, existing cache algorithms, such as the least recently used (LRU) algorithm, which is used to optimize cache popularity, and the MOST algorithm, which is used to optimize the write amplification factor, cannot exploit the full performance of the proposed cache systems because of their inappropriate optimization objectives. This article proposes a new SMR-aware cache framework called SAC+ to improve SMR-based hybrid storage. SAC+ integrates the two dominant types of SMR drives—namely, drive-managed and host-managed SMR drives—and provides a universal framework implementation. In addition, SAC+ integrally combines the drive characteristics to optimize I/O performance. The results of evaluations conducted using real-world traces indicate that SAC+ reduces the I/O time by 36–93% compared with state-of-the-art algorithms.</p>","PeriodicalId":49113,"journal":{"name":"ACM Transactions on Storage","volume":"2011 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Storage","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3588442","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
To satisfy the enormous storage capacities required for big data, data centers have been adopting high-density shingled magnetic recording (SMR) disks. However, the weak fine-grained random write performance of SMR disks caused by their inherent write amplification and unbalanced read–write performance poses a severe challenge. Many studies have proposed solid-state drive (SSD) cache systems to address this issue. However, existing cache algorithms, such as the least recently used (LRU) algorithm, which is used to optimize cache popularity, and the MOST algorithm, which is used to optimize the write amplification factor, cannot exploit the full performance of the proposed cache systems because of their inappropriate optimization objectives. This article proposes a new SMR-aware cache framework called SAC+ to improve SMR-based hybrid storage. SAC+ integrates the two dominant types of SMR drives—namely, drive-managed and host-managed SMR drives—and provides a universal framework implementation. In addition, SAC+ integrally combines the drive characteristics to optimize I/O performance. The results of evaluations conducted using real-world traces indicate that SAC+ reduces the I/O time by 36–93% compared with state-of-the-art algorithms.
期刊介绍:
The ACM Transactions on Storage (TOS) is a new journal with an intent to publish original archival papers in the area of storage and closely related disciplines. Articles that appear in TOS will tend either to present new techniques and concepts or to report novel experiences and experiments with practical systems. Storage is a broad and multidisciplinary area that comprises of network protocols, resource management, data backup, replication, recovery, devices, security, and theory of data coding, densities, and low-power. Potential synergies among these fields are expected to open up new research directions.