Water uptake as a fuel for soft actuators from cellulose

IF 0.9 4区 农林科学 Q3 MATERIALS SCIENCE, PAPER & WOOD Nordic Pulp & Paper Research Journal Pub Date : 2023-11-17 DOI:10.1515/npprj-2023-0037
Lisa Lopes da Costa, Ana Villares
{"title":"Water uptake as a fuel for soft actuators from cellulose","authors":"Lisa Lopes da Costa, Ana Villares","doi":"10.1515/npprj-2023-0037","DOIUrl":null,"url":null,"abstract":"Water plays an important role in the properties of cellulose. In materials design, the water uptake of cellulose has been traditionally seen as a drawback, since water reduces mechanical resistance of paper and cardboard, and at high hydration, cellulose-based products are disintegrated. However, recently, the hydration of cellulose has been considered as an advantage to design water-responsive soft actuators. In Nature, water is the fuel for several plant functions that involve motion, such as the seed release or the plant protection from high temperature and radiation. Inspired by these natural systems, cellulose-based actuators have been designed to display different movements (bending, twisting, curling) in response to water. Biopolymer structuration inducing anisotropy within the system allows the asymmetric expansion of layers, which results in macroscopic movement. This review gives an overview of the soft actuators triggered by the hydration/dehydration processes of cellulose. We present representative examples of water-triggered natural actuators, which have inspired researchers to design anisotropic cellulose-based materials that develop controlled movement in response to water.","PeriodicalId":19315,"journal":{"name":"Nordic Pulp & Paper Research Journal","volume":"38 2","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nordic Pulp & Paper Research Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/npprj-2023-0037","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0

Abstract

Water plays an important role in the properties of cellulose. In materials design, the water uptake of cellulose has been traditionally seen as a drawback, since water reduces mechanical resistance of paper and cardboard, and at high hydration, cellulose-based products are disintegrated. However, recently, the hydration of cellulose has been considered as an advantage to design water-responsive soft actuators. In Nature, water is the fuel for several plant functions that involve motion, such as the seed release or the plant protection from high temperature and radiation. Inspired by these natural systems, cellulose-based actuators have been designed to display different movements (bending, twisting, curling) in response to water. Biopolymer structuration inducing anisotropy within the system allows the asymmetric expansion of layers, which results in macroscopic movement. This review gives an overview of the soft actuators triggered by the hydration/dehydration processes of cellulose. We present representative examples of water-triggered natural actuators, which have inspired researchers to design anisotropic cellulose-based materials that develop controlled movement in response to water.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纤维素作为软执行器的吸水燃料
水在纤维素的性质中起着重要的作用。在材料设计中,纤维素的吸水率传统上被视为一个缺点,因为水会降低纸和纸板的机械阻力,并且在高度水合作用下,纤维素基产品会分解。然而,最近,纤维素的水化作用被认为是设计水响应软执行器的一个优势。在自然界中,水是一些涉及运动的植物功能的燃料,例如种子释放或植物免受高温和辐射的保护。受这些自然系统的启发,基于纤维素的执行器被设计成对水做出不同的反应(弯曲、扭曲、卷曲)。生物聚合物结构诱导系统内的各向异性允许层的不对称膨胀,从而导致宏观运动。本文综述了由纤维素水合/脱水过程引发的软致动器。我们提出了水触发自然致动器的代表性例子,这启发了研究人员设计基于纤维素的各向异性材料,这些材料可以在水的作用下产生可控的运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nordic Pulp & Paper Research Journal
Nordic Pulp & Paper Research Journal 工程技术-材料科学:纸与木材
CiteScore
2.50
自引率
16.70%
发文量
62
审稿时长
1 months
期刊介绍: Nordic Pulp & Paper Research Journal (NPPRJ) is a peer-reviewed, international scientific journal covering to-date science and technology research in the areas of wood-based biomass: Pulp and paper: products and processes Wood constituents: characterization and nanotechnologies Bio-refining, recovery and energy issues Utilization of side-streams from pulping processes Novel fibre-based, sustainable and smart materials. The editors and the publisher are committed to high quality standards and rapid handling of the peer review and publication processes. Topics Cutting-edge topics such as, but not limited to, the following: Biorefining, energy issues Wood fibre characterization and nanotechnology Side-streams and new products from wood pulping processes Mechanical pulping Chemical pulping, recovery and bleaching Paper technology Paper chemistry and physics Coating Paper-ink-interactions Recycling Environmental issues.
期刊最新文献
Development of fibre properties in mill scale: high- and low consistency refining of thermomechanical pulp (part 2) – Importance of fibre curl Influence mechanism of paper mechanical properties: numerical simulation and experimental verification based on a fiber network Biobased nanocomposite coating of paper for packaging Evaluation of oxygen delignified fibers with high water absorbency, as a greener alternative to fully bleached fibers for tissue paper Effects of xylan-modified precipitated calcium carbonate filler on the properties of paper
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1