Continuous Flow Generation of Highly Reactive Organometallic Intermediates: A Recent Update

IF 2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Journal of Flow Chemistry Pub Date : 2023-11-28 DOI:10.1007/s41981-023-00292-y
Mauro Spennacchio, Philipp Natho, Michael Andresini, Marco Colella
{"title":"Continuous Flow Generation of Highly Reactive Organometallic Intermediates: A Recent Update","authors":"Mauro Spennacchio,&nbsp;Philipp Natho,&nbsp;Michael Andresini,&nbsp;Marco Colella","doi":"10.1007/s41981-023-00292-y","DOIUrl":null,"url":null,"abstract":"<div><p>Reactive organometallic intermediates present a distinct opportunity for the creation of novel carbon-carbon and carbon-heteroatom bonds. Whereas their utility in synthesis is well-established, the thermal sensitivity of these species often imposes the requirement for stringent reaction conditions, including strict control of reaction temperatures, concentrations, and use of additives. Moreover, their strong reactivity can pose challenges in achieving the desired selectivity. Since pioneering works in the 2000s, the advent of flow microreactor technology has revolutionized this field, expanding the possibilities of reactive organometallic intermediates within synthetic chemistry. In this review, we provide an overview of the recent advancements in this dynamic area, focusing on breakthroughs that have emerged within the past four years.</p></div>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"14 1","pages":"43 - 83"},"PeriodicalIF":2.0000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Flow Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41981-023-00292-y","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Reactive organometallic intermediates present a distinct opportunity for the creation of novel carbon-carbon and carbon-heteroatom bonds. Whereas their utility in synthesis is well-established, the thermal sensitivity of these species often imposes the requirement for stringent reaction conditions, including strict control of reaction temperatures, concentrations, and use of additives. Moreover, their strong reactivity can pose challenges in achieving the desired selectivity. Since pioneering works in the 2000s, the advent of flow microreactor technology has revolutionized this field, expanding the possibilities of reactive organometallic intermediates within synthetic chemistry. In this review, we provide an overview of the recent advancements in this dynamic area, focusing on breakthroughs that have emerged within the past four years.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高活性有机金属中间体的连续流动生成:最新进展
反应性有机金属中间体为创造新的碳-碳和碳-杂原子键提供了独特的机会。虽然它们在合成中的应用是公认的,但这些物质的热敏性通常要求严格的反应条件,包括严格控制反应温度、浓度和添加剂的使用。此外,它们的强反应性对实现期望的选择性提出了挑战。自2000年代的开创性工作以来,流动微反应器技术的出现彻底改变了这一领域,扩大了合成化学中反应性有机金属中间体的可能性。在这篇综述中,我们概述了这个充满活力的领域的最新进展,重点介绍了过去四年中出现的突破。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Flow Chemistry
Journal of Flow Chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
6.40
自引率
3.70%
发文量
29
审稿时长
>12 weeks
期刊介绍: The main focus of the journal is flow chemistry in inorganic, organic, analytical and process chemistry in the academic research as well as in applied research and development in the pharmaceutical, agrochemical, fine-chemical, petro- chemical, fragrance industry.
期刊最新文献
Rapid and practical synthesis of N-protected amino ketones in continuous flow via pre-deprotonation protocol Expedited access to β-lactams via a telescoped three-component Staudinger reaction in flow Efficient “One-Column” grignard generation and reaction in continuous flow Two deep learning methods in comparison to characterize droplet sizes in emulsification flow processes Enhanced emulsification process between viscous liquids in an ultrasonic capillary microreactor: mechanism analysis and application in nano-emulsion preparation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1