Pub Date : 2024-10-08DOI: 10.1007/s41981-024-00338-9
Thaissa P. F. Rosalba, Guilherme J. P. Gonçalves, Carlos Eduardo M. Salvador, Alexandre Fonseca, Carlos Kleber Z. Andrade
Nanotechnology has emerged as a groundbreaking field with profound implications for drug delivery systems, offering precise targeting, controlled release, and enhanced therapeutic efficacy. Continuous flow process is a compelling approach in the production of nanoparticles, providing numerous advantages over traditional batch methods. By maintaining uniform conditions and precise control over reaction parameters, continuous flow systems enable enhanced reproducibility, scalability, and efficiency in nanoparticle synthesis. In this context, microfluidic hydrodynamic focusing (MHF) is a promising method for continuous flow lipid nanoparticle synthesis. Herein, we report a study for the development of a single-step continuous flow process to generate nanoparticles using a PLA chip device inspired by microfluidic techniques. A lipid peptoid synthesized via Ugi reaction was chosen from an ongoing study to evaluate the most appropriate conditions for the continuous flow process. It was possible to produce nanoparticles with small size and the optimized parameters generated nanoparticles with sizes ≤ 200 nm, making them good candidates for drug delivery system.
{"title":"A modular flow process intensification towards lipid peptoids nano assembly formation","authors":"Thaissa P. F. Rosalba, Guilherme J. P. Gonçalves, Carlos Eduardo M. Salvador, Alexandre Fonseca, Carlos Kleber Z. Andrade","doi":"10.1007/s41981-024-00338-9","DOIUrl":"10.1007/s41981-024-00338-9","url":null,"abstract":"<div><p>Nanotechnology has emerged as a groundbreaking field with profound implications for drug delivery systems, offering precise targeting, controlled release, and enhanced therapeutic efficacy. Continuous flow process is a compelling approach in the production of nanoparticles, providing numerous advantages over traditional batch methods. By maintaining uniform conditions and precise control over reaction parameters, continuous flow systems enable enhanced reproducibility, scalability, and efficiency in nanoparticle synthesis. In this context, microfluidic hydrodynamic focusing (MHF) is a promising method for continuous flow lipid nanoparticle synthesis. Herein, we report a study for the development of a single-step continuous flow process to generate nanoparticles using a PLA chip device inspired by microfluidic techniques. A lipid peptoid synthesized via Ugi reaction was chosen from an ongoing study to evaluate the most appropriate conditions for the continuous flow process. It was possible to produce nanoparticles with small size and the optimized parameters generated nanoparticles with sizes ≤ 200 nm, making them good candidates for drug delivery system.</p><h3>Graphical abstracts</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"14 4","pages":"677 - 689"},"PeriodicalIF":2.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-07DOI: 10.1007/s41981-024-00335-y
James A. K. Cochrane, Aaron J. Rigby, Raminder S. Mulla
Two low-cost reactors for aryllithium generation and trapping with an electrophile in flow have been developed for use with small quantities of limiting reagent (600 (upmu )mol) using reductions in flow rates as the approach to miniaturisation. To this end, a number of inexpensive, commercially available mixing elements were characterised via model lithium-halogen exchange reactions to determine their performance at low (< 5 mL min-1) flow rates. From these studies, a glass chip mixer, and 250 (upmu )m tee-pieces were identified for use at low flow rates and therefore incorporated into the aforementioned reactors. These reactors were demonstrated to be suitable for the successful lithiation and trapping of a selection of ArX substrates. Impact of flow: Organolithium chemistry greatly benefits from translation to flow. Increased heat transfer means that reactions may be run at higher temperatures than in batch, with drastically reduced reaction times. Moreover, the precise control of stoichiometry via flow rates, coupled with the improved mixing in flow leads to improved functional group tolerance and selectivity.
两个低成本的反应堆用于芳基锂的生成和在流动中捕获亲电试剂,用于使用少量的限制试剂(600 (upmu ) mol),使用降低流速作为小型化的方法。为此,通过模型锂-卤素交换反应表征了许多廉价的、市售的混合元素,以确定它们在低(&lt;5 mL min-1)流速。从这些研究中,确定了一个玻璃屑混合器和250 (upmu ) m三通片用于低流速,因此纳入上述反应器。这些反应器被证明适合于成功的锂化和捕获选定的ArX衬底。流动的影响:有机锂化学极大地受益于转化为流动。增加的热传递意味着反应可能在比批量反应更高的温度下进行,反应时间大大缩短。此外,通过流速精确控制化学计量,再加上流动中混合的改善,可以提高官能团的耐受性和选择性。
{"title":"Towards an approach to small-scale aryllithium flash flow chemistry using low-cost, low volume reactors","authors":"James A. K. Cochrane, Aaron J. Rigby, Raminder S. Mulla","doi":"10.1007/s41981-024-00335-y","DOIUrl":"10.1007/s41981-024-00335-y","url":null,"abstract":"<p>Two low-cost reactors for aryllithium generation and trapping with an electrophile in flow have been developed for use with small quantities of limiting reagent (600 <span>(upmu )</span>mol) using reductions in flow rates as the approach to miniaturisation. To this end, a number of inexpensive, commercially available mixing elements were characterised via model lithium-halogen exchange reactions to determine their performance at low (< 5 mL min<sup>-1</sup>) flow rates. From these studies, a glass chip mixer, and 250 <span>(upmu )</span>m tee-pieces were identified for use at low flow rates and therefore incorporated into the aforementioned reactors. These reactors were demonstrated to be suitable for the successful lithiation and trapping of a selection of ArX substrates. <b>Impact of flow: </b>Organolithium chemistry greatly benefits from translation to flow. Increased heat transfer means that reactions may be run at higher temperatures than in batch, with drastically reduced reaction times. Moreover, the precise control of stoichiometry via flow rates, coupled with the improved mixing in flow leads to improved functional group tolerance and selectivity.</p>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"14 4","pages":"667 - 675"},"PeriodicalIF":2.0,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-03DOI: 10.1007/s41981-024-00334-z
Mabel Cornwell, Spyridon Damilos, Ivan P. Parkin, Asterios Gavriilidis
Gold nanoparticles have diverse applications, requiring advancements in their synthesis that facilitate scale up, size control and reproducibility. Using a seeded-growth method in a 20 mL two-phase flow reactor (ID 2.4 mm) at 35 °C, highly monodisperse gold nanoparticles of any chosen size from 20 to 60 nm were produced. Heptane was utilised as the segmenting fluid to transport the aqueous reagent-containing droplets through a coiled PTFE reactor preventing their interaction with the reactor walls and thus reactor fouling. Gold seeds ~ 12 nm were produced via a passivated Turkevich synthesis by reduction of high pH Au(III) solution using citric acid as reducing agent. For the seeded-growth in flow, the reagents utilised were the seed solution (diluted accordingly), a stabilising Tris base solution, tetrachloroauric(III) acid trihydrate and hydrogen peroxide as reducing agent. Seeded-growth synthesis was also performed using as seeds commercial 10 nm gold nanoparticles, with excellent Coefficient of Variation (CoV) and Optical Density (OD) of the grown particles (CoV < 8% and OD ≥ 1) demonstrating that they are monodisperse and have high concentration. The synthesis was able to produce 18 mL/h of grown nanoparticles solution at 2.2–2.8 mg Au/h without any divergence in the quality of the produced particles for over eight hours.
{"title":"Seeded-growth synthesis of 20–60 nm monodisperse citrate-capped gold nanoparticles in a millifluidic reactor","authors":"Mabel Cornwell, Spyridon Damilos, Ivan P. Parkin, Asterios Gavriilidis","doi":"10.1007/s41981-024-00334-z","DOIUrl":"10.1007/s41981-024-00334-z","url":null,"abstract":"<div><p>Gold nanoparticles have diverse applications, requiring advancements in their synthesis that facilitate scale up, size control and reproducibility. Using a seeded-growth method in a 20 mL two-phase flow reactor (ID 2.4 mm) at 35 °C, highly monodisperse gold nanoparticles of any chosen size from 20 to 60 nm were produced. Heptane was utilised as the segmenting fluid to transport the aqueous reagent-containing droplets through a coiled PTFE reactor preventing their interaction with the reactor walls and thus reactor fouling. Gold seeds ~ 12 nm were produced via a passivated Turkevich synthesis by reduction of high pH Au(III) solution using citric acid as reducing agent. For the seeded-growth in flow, the reagents utilised were the seed solution (diluted accordingly), a stabilising Tris base solution, tetrachloroauric(III) acid trihydrate and hydrogen peroxide as reducing agent. Seeded-growth synthesis was also performed using as seeds commercial 10 nm gold nanoparticles, with excellent Coefficient of Variation (CoV) and Optical Density (OD) of the grown particles (CoV < 8% and OD ≥ 1) demonstrating that they are monodisperse and have high concentration. The synthesis was able to produce 18 mL/h of grown nanoparticles solution at 2.2–2.8 mg Au/h without any divergence in the quality of the produced particles for over eight hours.</p></div>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"14 4","pages":"655 - 666"},"PeriodicalIF":2.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41981-024-00334-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-27DOI: 10.1007/s41981-024-00337-w
Chengyi Hu, Fan Jiang, Ju Yan
A microfluidic chip is introduced for generating double emulsion droplets, consisting of a coaxial focusing center structure combined with a flow-focusing structure. The volume of fluid method (VOF) was adopted to numerically simulate and validate the formation of double emulsion droplets in the device. The impact of microfluidics on the dimensions and molding position of double emulsion droplets was examined under varying flow parameters and physical properties. Results demonstrate that the impact of the alteration in the flow rate of the middle phase is pivotal in the droplet generation process in comparison to the outer phase. An increase in the flow rate of the middle phase results in a notable enlargement of the double emulsion droplets. An increase in viscosity affects the forming regime, causing a transition in the droplet regime. Furthermore, interfacial tension exerts a notable impact on the positioning of droplet formation. The microfluidic device outlined in this paper effectively generates double emulsion droplets characterized by high monodispersity and excellent stability, which serves as a new reference for the practical generation of double emulsion droplets.
{"title":"Formation of double emulsion droplets in flow-focusing microchips: a numerical parametric study","authors":"Chengyi Hu, Fan Jiang, Ju Yan","doi":"10.1007/s41981-024-00337-w","DOIUrl":"10.1007/s41981-024-00337-w","url":null,"abstract":"<div><p>A microfluidic chip is introduced for generating double emulsion droplets, consisting of a coaxial focusing center structure combined with a flow-focusing structure. The volume of fluid method (VOF) was adopted to numerically simulate and validate the formation of double emulsion droplets in the device. The impact of microfluidics on the dimensions and molding position of double emulsion droplets was examined under varying flow parameters and physical properties. Results demonstrate that the impact of the alteration in the flow rate of the middle phase is pivotal in the droplet generation process in comparison to the outer phase. An increase in the flow rate of the middle phase results in a notable enlargement of the double emulsion droplets. An increase in viscosity affects the forming regime, causing a transition in the droplet regime. Furthermore, interfacial tension exerts a notable impact on the positioning of droplet formation. The microfluidic device outlined in this paper effectively generates double emulsion droplets characterized by high monodispersity and excellent stability, which serves as a new reference for the practical generation of double emulsion droplets.</p></div>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"14 4","pages":"641 - 653"},"PeriodicalIF":2.0,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The nucleophilic reaction of Weinreb amides with Grignard or organic lithium reagents is widely used in the synthesis of amino ketones because of the formation of stable metal chelate tetrahedral intermediates. However, their large-scale synthesis in batch seriously suffers from the use of excess of nucleophiles due to carbamate group of N-protected amino Weinreb amides and the harsh reaction conditions required by Grignard or organic lithium reagents. In this case, N-protected amino ketones were rapidly synthesized by a practical and efficient continuous flow method under mild conditions. By precisely introducing a simple alkyl Grignard base to deprotonate the carbamate group, the functionalized N-protected amino ketones can be efficiently obtained within 128 s with only a slightly excess of stoichiometric amount of nucleophile, with the yield up to 96%. In addition, the scope of this method was demonstrated over 35 substrates with 3 protective groups signifying the excellent substrate and protecting group tolerances. A scale-up preparation affords a throughput of 7.9 g h-1, indicating potential large-scale application. This work lays the foundation for the large-scale automated synthesis of a variety of N-protected amino ketones.
{"title":"Rapid and practical synthesis of N-protected amino ketones in continuous flow via pre-deprotonation protocol","authors":"Weixia Lin, Zilong Lin, Chaoming Liang, Maolin Sun, Ruihua Cheng, Jinxing Ye","doi":"10.1007/s41981-024-00336-x","DOIUrl":"10.1007/s41981-024-00336-x","url":null,"abstract":"<div><p>The nucleophilic reaction of Weinreb amides with Grignard or organic lithium reagents is widely used in the synthesis of amino ketones because of the formation of stable metal chelate tetrahedral intermediates. However, their large-scale synthesis in batch seriously suffers from the use of excess of nucleophiles due to carbamate group of <i>N</i>-protected amino Weinreb amides and the harsh reaction conditions required by Grignard or organic lithium reagents. In this case, <i>N</i>-protected amino ketones were rapidly synthesized by a practical and efficient continuous flow method under mild conditions. By precisely introducing a simple alkyl Grignard base to deprotonate the carbamate group, the functionalized <i>N</i>-protected amino ketones can be efficiently obtained within 128 s with only a slightly excess of stoichiometric amount of nucleophile, with the yield up to 96%. In addition, the scope of this method was demonstrated over 35 substrates with 3 protective groups signifying the excellent substrate and protecting group tolerances. A scale-up preparation affords a throughput of 7.9 g h<sup>-1</sup>, indicating potential large-scale application. This work lays the foundation for the large-scale automated synthesis of a variety of <i>N</i>-protected amino ketones.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"14 4","pages":"631 - 639"},"PeriodicalIF":2.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142268529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-23DOI: 10.1007/s41981-024-00333-0
Federica Minuto, Andrea Basso, Marcus Baumann
The Staudinger reaction is widely used for the generation of β-lactams via the thermal cycloaddition of imines with ketenes. Traditionally, it cannot be performed as a multicomponent reaction between aldehydes, amines and ketenes, thus limiting its versatility. Recently we reported for the first time a three-component Staudinger reaction in batch, exploiting a photochemical Wolff rearrangement of diazoketones and an in situ generation of the imine. Here we report an expedited continuous flow approach that generates the crucial ketene intermediate prior to its telescoped reaction with an imine component at ambient temperatures. The imine is prepared by an in situ dehydration between amines and aldehydes in a packed bed reactor containing basic alumina as drying agent. The resulting telescoped flow approach features a fast dehydration reaction (tRes ca. 3 min) as well as an efficient Wolff rearrangement using LEDs (420 nm) to afford the desired β-lactam products in less than 30 min which compares favorably with reaction times of several days in batch mode. Flow processing thereby affords a safe and streamlined entry to these important targets and allows their effective generation on gram scale. Moreover, this approach exploits several homogeneous and heterogeneous transformations under mild conditions that generate water and nitrogen gas as the only by-products.
{"title":"Expedited access to β-lactams via a telescoped three-component Staudinger reaction in flow","authors":"Federica Minuto, Andrea Basso, Marcus Baumann","doi":"10.1007/s41981-024-00333-0","DOIUrl":"10.1007/s41981-024-00333-0","url":null,"abstract":"<div><p>The Staudinger reaction is widely used for the generation of β-lactams <i>via</i> the thermal cycloaddition of imines with ketenes. Traditionally, it cannot be performed as a multicomponent reaction between aldehydes, amines and ketenes, thus limiting its versatility. Recently we reported for the first time a three-component Staudinger reaction in batch, exploiting a photochemical Wolff rearrangement of diazoketones and an in situ generation of the imine. Here we report an expedited continuous flow approach that generates the crucial ketene intermediate prior to its telescoped reaction with an imine component at ambient temperatures. The imine is prepared by an in situ dehydration between amines and aldehydes in a packed bed reactor containing basic alumina as drying agent. The resulting telescoped flow approach features a fast dehydration reaction (t<sub>Res</sub> ca. 3 min) as well as an efficient Wolff rearrangement using LEDs (420 nm) to afford the desired β-lactam products in less than 30 min which compares favorably with reaction times of several days in batch mode. Flow processing thereby affords a safe and streamlined entry to these important targets and allows their effective generation on gram scale. Moreover, this approach exploits several homogeneous and heterogeneous transformations under mild conditions that generate water and nitrogen gas as the only by-products.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"14 4","pages":"615 - 621"},"PeriodicalIF":2.0,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41981-024-00333-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142178159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-06DOI: 10.1007/s41981-024-00332-1
Maolin Sun, Hong Li, Hualiang Chen, Rixin Shao, Fanghua Chen, Xiangmin Sang, Weixia Lin, Yueyue Ma, Ruihua Cheng, Jinxing Ye
A straightforward “one-column” continuous flow method of Grignard generation and reaction was successfully developed. The diverse mixtures of aryl- or alkyl- halides and electrophiles were flowed through an activited magnesium packed-bed column, delivering a series of ketones, secondary alcohols, tertiary alcohols, esters, amides, and sulfinamides immediately in moderate to good yields. By combining Grignard generation and reaction into one step and avoiding the separate preparation and storage of Grignard reagents, this practical and efficient protocol dramatically enhanced the safety of operation and provided a convenient access for Grignard reactions, compared with traditional batch process. The continuous flow synthesis of Grignard generation and reaction is carried out in a magnesium packed-bed column successfully.The target product is provided in moderate to good yields within 6.0 min. This protocol with preferable controllability, good selectivity, and safety extremely simplified operational procedure.
{"title":"Efficient “One-Column” grignard generation and reaction in continuous flow","authors":"Maolin Sun, Hong Li, Hualiang Chen, Rixin Shao, Fanghua Chen, Xiangmin Sang, Weixia Lin, Yueyue Ma, Ruihua Cheng, Jinxing Ye","doi":"10.1007/s41981-024-00332-1","DOIUrl":"10.1007/s41981-024-00332-1","url":null,"abstract":"<div><p>A straightforward “one-column” continuous flow method of Grignard generation and reaction was successfully developed. The diverse mixtures of aryl- or alkyl- halides and electrophiles were flowed through an activited magnesium packed-bed column, delivering a series of ketones, secondary alcohols, tertiary alcohols, esters, amides, and sulfinamides immediately in moderate to good yields. By combining Grignard generation and reaction into one step and avoiding the separate preparation and storage of Grignard reagents, this practical and efficient protocol dramatically enhanced the safety of operation and provided a convenient access for Grignard reactions, compared with traditional batch process. The continuous flow synthesis of Grignard generation and reaction is carried out in a magnesium packed-bed column successfully.The target product is provided in moderate to good yields within 6.0 min. This protocol with preferable controllability, good selectivity, and safety extremely simplified operational procedure.</p></div>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"14 4","pages":"623 - 630"},"PeriodicalIF":2.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141933801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-30DOI: 10.1007/s41981-024-00330-3
Inga Burke, Thajeevan Dhayaparan, Ahmed S. Youssef, Katharina Schmidt, Norbert Kockmann
For reliable supervision in multiphase processes, the droplet size represents a critical quality attribute and needs to be monitored. A promising approach is the use of smart image flow sensors since optical measurement is the most commonly used technique for droplet size distribution determination. For this, two different AI-based object detection methods, Mask RCNN and YOLOv4, are compared regarding their accuracy and their applicability to an emulsification flow process. Iterative optimization steps, including data diversification and adaption of training parameters, enable the models to achieve robust detection performance across varying image qualities and compositions. YOLOv4 shows better detection performances and more accurate results which leads to a wider application window than Mask RCNN in determining droplet sizes in emulsification processes. The final droplet detection model YOLOv4 with Hough Circle (HC) for feature extraction determines reliable droplet sizes across diverse datasets of liquid-liquid flow systems (disperse phase content 1–15 vol.-%, droplet size range 5–150 μm). Evaluating the adjustment of Confidence Scores (CS) ensures statistical representation of even smaller droplets. The droplet detection performance of the final YOLOv4 model is compared with a manual image processing method to validate the model in general as well as its accuracy and reliability. Since YOLOv4 in combination with Hough Circle (HC) shows an accurate and robust detection and size determination, it is applicable for online monitoring and characterization of various liquid-liquid flow processes.
{"title":"Two deep learning methods in comparison to characterize droplet sizes in emulsification flow processes","authors":"Inga Burke, Thajeevan Dhayaparan, Ahmed S. Youssef, Katharina Schmidt, Norbert Kockmann","doi":"10.1007/s41981-024-00330-3","DOIUrl":"10.1007/s41981-024-00330-3","url":null,"abstract":"<div><p>For reliable supervision in multiphase processes, the droplet size represents a critical quality attribute and needs to be monitored. A promising approach is the use of smart image flow sensors since optical measurement is the most commonly used technique for droplet size distribution determination. For this, two different AI-based object detection methods, Mask RCNN and YOLOv4, are compared regarding their accuracy and their applicability to an emulsification flow process. Iterative optimization steps, including data diversification and adaption of training parameters, enable the models to achieve robust detection performance across varying image qualities and compositions. YOLOv4 shows better detection performances and more accurate results which leads to a wider application window than Mask RCNN in determining droplet sizes in emulsification processes. The final droplet detection model YOLOv4 with Hough Circle (HC) for feature extraction determines reliable droplet sizes across diverse datasets of liquid-liquid flow systems (disperse phase content 1–15 vol.-%, droplet size range 5–150 μm). Evaluating the adjustment of Confidence Scores (CS) ensures statistical representation of even smaller droplets. The droplet detection performance of the final YOLOv4 model is compared with a manual image processing method to validate the model in general as well as its accuracy and reliability. Since YOLOv4 in combination with Hough Circle (HC) shows an accurate and robust detection and size determination, it is applicable for online monitoring and characterization of various liquid-liquid flow processes.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"14 4","pages":"597 - 613"},"PeriodicalIF":2.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41981-024-00330-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141862809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Experimental investigations into acoustic cavitation and ultrasound-assited emulsification process between highly viscous liquids were systematically conducted in a laboratory-built ultrasonic microreactor. Under ultrasound irradiation, four cavitation modes were observed simultaneously in soybean oil, including volume, shape, transient collapse and cavitation clouds. Influenced by the intense oscillation of cavitation bubbles, emulsification between viscous liquids was initiated through a dispersion and migration mode. The effects of varying parameters, such as input power, residence time, channel size, HLB value, surfactant concentration and volume ratio between aqueous and oil phase, on the size and polydispersity of prepared emulsion were investigated using water-soybean oil two-phase system as a model. The emulsion size was reduced to 75.60 nm through optimization of experimental parameters. Based on these findings, the ultrasonic microreactor was successfully employed in the preparation of Vitamin E-enriched nano-emulsions. A fine emulsion with low average size (47.69 nm) and good storage stability (60 days) was prepared within 2 min, further indicating the potential application of ultrasonic microreactor in the beverage and pharmaceutical industries.
在实验室建造的超声波微反应器中,对高粘度液体之间的声空化和超声波辅助乳化过程进行了系统的实验研究。在超声波照射下,大豆油中同时出现了四种空化模式,包括体积空化、形状空化、瞬时塌陷空化和空化云。受空化气泡强烈振荡的影响,粘性液体之间通过分散和迁移模式开始乳化。以水-豆油两相体系为模型,研究了不同参数(如输入功率、停留时间、通道尺寸、HLB 值、表面活性剂浓度以及水相和油相之间的体积比)对所制备乳液的粒度和多分散性的影响。通过优化实验参数,乳液粒度减小到 75.60 nm。基于这些发现,超声微反应器被成功用于制备富含维生素 E 的纳米乳液。在 2 分钟内就制备出了平均粒径较小(47.69 nm)且具有良好储存稳定性(60 天)的精细乳液,这进一步表明了超声波微反应器在饮料和制药行业的应用潜力。
{"title":"Enhanced emulsification process between viscous liquids in an ultrasonic capillary microreactor: mechanism analysis and application in nano-emulsion preparation","authors":"Sawita Tanwinit, Shuainan Zhao, Chaoqun Yao, Guangwen Chen","doi":"10.1007/s41981-024-00331-2","DOIUrl":"10.1007/s41981-024-00331-2","url":null,"abstract":"<div><p>Experimental investigations into acoustic cavitation and ultrasound-assited emulsification process between highly viscous liquids were systematically conducted in a laboratory-built ultrasonic microreactor. Under ultrasound irradiation, four cavitation modes were observed simultaneously in soybean oil, including volume, shape, transient collapse and cavitation clouds. Influenced by the intense oscillation of cavitation bubbles, emulsification between viscous liquids was initiated through a dispersion and migration mode. The effects of varying parameters, such as input power, residence time, channel size, HLB value, surfactant concentration and volume ratio between aqueous and oil phase, on the size and polydispersity of prepared emulsion were investigated using water-soybean oil two-phase system as a model. The emulsion size was reduced to 75.60 nm through optimization of experimental parameters. Based on these findings, the ultrasonic microreactor was successfully employed in the preparation of Vitamin E-enriched nano-emulsions. A fine emulsion with low average size (47.69 nm) and good storage stability (60 days) was prepared within 2 min, further indicating the potential application of ultrasonic microreactor in the beverage and pharmaceutical industries.</p></div>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"14 3","pages":"569 - 584"},"PeriodicalIF":2.0,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141741485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-22DOI: 10.1007/s41981-024-00329-w
Michele Emanuele Fortunato, Rita Pagano, Valeria Romanucci, Chiara Licenziato, Armando Zarrelli, Martino Di Serio, Giovanni Di Fabio, Vincenzo Russo
The separation of silybin A (SilA) and B (SilB) diastereomers in optically pure compounds is challenging due to their very similar physical and chemical properties. However, such separation is crucial for evaluating the biological activity of the diasteroisomers SilA and SilB, which show very different performance in pharmacological applications like treating prostate cancer, liver diseases, and Alzheimer’s disease. The most common isolation method is based on high-performance liquid chromatography, but it is slow and has a yield in pure SilB of hundreds of milligrams per day. An alternative chemo-enzymatic separation method, utilizing an immobilized lipase CALB catalyst to stereoselectively acetylate silybin B (1b), offers advantages in terms of higher productivity, selectivity, and scalability, particularly when applied in flow reactors. This study delves into the kinetics of Sil acetylation catalyzed by Novozym 435 in a continuous flow milli-reactor, investigated at various temperatures, volumetric flow rates, and Sil initial concentrations. It is noteworthy that, at the current state of the art, there is a lack of kinetic studies on this reaction, emphasizing the novelty and significance of this work. The kinetic and fluid dynamic parameters were estimated using a non-linear regression analysis of experimental data. The examined reaction showed a null apparent activation energy, explaining the temperature insensitivity of the final acetylated silybin B (1b) concentration. Furthermore, the decrease in steady-state concentrations of the acetylated products with increasing volumetric flow rates indicated that the reaction was occurring in a kinetic regime. Interestingly, a maximum starting Sil concentration was identified, above which there was no favorable impact on conversion.
由于水飞蓟宾 A(SilA)和 B(SilB)非对映异构体的物理和化学性质非常相似,因此在光学纯化合物中分离这两种非对映异构体具有挑战性。然而,这种分离对于评估水飞蓟宾 A 和水飞蓟宾 B 非对映异构体的生物活性至关重要,因为这两种非对映异构体在治疗前列腺癌、肝病和阿尔茨海默病等药理应用中表现出截然不同的性能。最常见的分离方法是基于高效液相色谱法,但这种方法很慢,而且每天的纯 SilB 产量只有几百毫克。另一种化学酶分离方法是利用固定化脂肪酶 CALB 催化剂立体选择性地乙酰化水飞蓟宾 B (1b),这种方法在更高的生产率、选择性和可扩展性方面具有优势,尤其是在流动反应器中应用时。本研究深入探讨了 Novozym 435 在连续流动毫升反应器中催化水飞蓟宾乙酰化的动力学过程,并在不同温度、容积流速和水飞蓟宾初始浓度下进行了研究。值得注意的是,在目前的技术水平下,还缺乏对这一反应的动力学研究,这突出了这项工作的新颖性和重要性。通过对实验数据进行非线性回归分析,估算了动力学和流体动力学参数。所研究的反应显示了无效的表观活化能,这解释了乙酰化水飞蓟宾 B (1b) 最终浓度对温度的不敏感性。此外,乙酰化产物的稳态浓度随着体积流量的增加而降低,这表明反应是在动力学条件下进行的。有趣的是,已确定了一个最大起始硅浓度,超过该浓度对转化率没有任何有利影响。
{"title":"Novel insights into acetylation kinetics in a continuous Flow milli-reactor for chemo-enzymatic separation of silybin A/B","authors":"Michele Emanuele Fortunato, Rita Pagano, Valeria Romanucci, Chiara Licenziato, Armando Zarrelli, Martino Di Serio, Giovanni Di Fabio, Vincenzo Russo","doi":"10.1007/s41981-024-00329-w","DOIUrl":"10.1007/s41981-024-00329-w","url":null,"abstract":"<div><p>The separation of silybin A (<b>SilA</b>) and B (<b>SilB</b>) diastereomers in optically pure compounds is challenging due to their very similar physical and chemical properties. However, such separation is crucial for evaluating the biological activity of the diasteroisomers <b>SilA</b> and <b>SilB</b>, which show very different performance in pharmacological applications like treating prostate cancer, liver diseases, and Alzheimer’s disease. The most common isolation method is based on high-performance liquid chromatography, but it is slow and has a yield in pure <b>SilB</b> of hundreds of milligrams per day. An alternative chemo-enzymatic separation method, utilizing an immobilized lipase CALB catalyst to stereoselectively acetylate silybin B (<b>1b</b>), offers advantages in terms of higher productivity, selectivity, and scalability, particularly when applied in flow reactors. This study delves into the kinetics of <b>Sil</b> acetylation catalyzed by Novozym 435 in a continuous flow milli-reactor, investigated at various temperatures, volumetric flow rates, and Sil initial concentrations. It is noteworthy that, at the current state of the art, there is a lack of kinetic studies on this reaction, emphasizing the novelty and significance of this work. The kinetic and fluid dynamic parameters were estimated using a non-linear regression analysis of experimental data. The examined reaction showed a null apparent activation energy, explaining the temperature insensitivity of the final acetylated silybin B (<b>1b</b>) concentration. Furthermore, the decrease in steady-state concentrations of the acetylated products with increasing volumetric flow rates indicated that the reaction was occurring in a kinetic regime. Interestingly, a maximum starting Sil concentration was identified, above which there was no favorable impact on conversion.</p></div>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"14 3","pages":"585 - 595"},"PeriodicalIF":2.0,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41981-024-00329-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141741486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}