{"title":"Experimental study on the embedment strength of smooth dowels inserted in cross-laminated timber narrow side","authors":"Long, Weiguo, Ou, Jiajia, Sun, Xiaofeng, Huang, Xinyue, He, Minjuan, Li, Zheng","doi":"10.1186/s10086-022-02055-0","DOIUrl":null,"url":null,"abstract":"The embedment properties of the dowel-type fasteners is a fundamental parameter that can determine the shear resisting performance of the connections utilized in cross-laminated timber (CLT) structures. To investigate the embedment strength of the smooth dowels inserted in CLT narrow side, totally 504 CLT embedment specimens were tested to evaluate the effects of the influencing factors on the embedment strength, which included the loading angle, the embedment angle, the embedment position, the diameter of the dowels, and the gaps between the lumbers. The existing predictive equations of the embedment strength were validated based on the experimental results, and modified empirical equations were proposed for a more accurate prediction on the average embedment strength. It is found that when the loading direction with a loading angle of 90 degree is parallel to the adhesive layer, for the dowels embedded in the core layer and for those embedded between layers, the average embedment strength decreases by 27.89% and by 33.61% with an increase of the diameter from 8 to 24 mm, respectively. When the loading direction is perpendicular to the adhesive layer, the average embedment strength of the smooth dowels with an embedment angle of 90 degree is 85.25–218.96% higher than that of the dowels with an embedment angle of 0 degree. Furthermore, almost no drop can be identified for the embedment strength of the dowels with an embedment angle of 0 degree when the gap exists in their embedment position. A more accurate prediction on the average embedment strength can be achieved based on the modified empirical equations.","PeriodicalId":17664,"journal":{"name":"Journal of Wood Science","volume":"67 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2022-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wood Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1186/s10086-022-02055-0","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 7
Abstract
The embedment properties of the dowel-type fasteners is a fundamental parameter that can determine the shear resisting performance of the connections utilized in cross-laminated timber (CLT) structures. To investigate the embedment strength of the smooth dowels inserted in CLT narrow side, totally 504 CLT embedment specimens were tested to evaluate the effects of the influencing factors on the embedment strength, which included the loading angle, the embedment angle, the embedment position, the diameter of the dowels, and the gaps between the lumbers. The existing predictive equations of the embedment strength were validated based on the experimental results, and modified empirical equations were proposed for a more accurate prediction on the average embedment strength. It is found that when the loading direction with a loading angle of 90 degree is parallel to the adhesive layer, for the dowels embedded in the core layer and for those embedded between layers, the average embedment strength decreases by 27.89% and by 33.61% with an increase of the diameter from 8 to 24 mm, respectively. When the loading direction is perpendicular to the adhesive layer, the average embedment strength of the smooth dowels with an embedment angle of 90 degree is 85.25–218.96% higher than that of the dowels with an embedment angle of 0 degree. Furthermore, almost no drop can be identified for the embedment strength of the dowels with an embedment angle of 0 degree when the gap exists in their embedment position. A more accurate prediction on the average embedment strength can be achieved based on the modified empirical equations.
期刊介绍:
The Journal of Wood Science is the official journal of the Japan Wood Research Society. This journal provides an international forum for the exchange of knowledge and the discussion of current issues in wood and its utilization. The journal publishes original articles on basic and applied research dealing with the science, technology, and engineering of wood, wood components, wood and wood-based products, and wood constructions. Articles concerned with pulp and paper, fiber resources from non-woody plants, wood-inhabiting insects and fungi, wood biomass, and environmental and ecological issues in forest products are also included. In addition to original articles, the journal publishes review articles on selected topics concerning wood science and related fields. The editors welcome the submission of manuscripts from any country.