{"title":"Towards the 0-statement of the Kohayakawa-Kreuter conjecture","authors":"Joseph Hyde","doi":"10.1017/s0963548322000219","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study asymmetric Ramsey properties of the random graph <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline1.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$G_{n,p}$\n</span></span>\n</span>\n</span>. Let <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline2.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$r \\in \\mathbb{N}$\n</span></span>\n</span>\n</span> and <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline3.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$H_1, \\ldots, H_r$\n</span></span>\n</span>\n</span> be graphs. We write <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline4.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$G_{n,p} \\to (H_1, \\ldots, H_r)$\n</span></span>\n</span>\n</span> to denote the property that whenever we colour the edges of <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline5.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$G_{n,p}$\n</span></span>\n</span>\n</span> with colours from the set <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline6.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$[r] \\,{:\\!=}\\, \\{1, \\ldots, r\\}$\n</span></span>\n</span>\n</span> there exists <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline7.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$i \\in [r]$\n</span></span>\n</span>\n</span> and a copy of <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline8.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$H_i$\n</span></span>\n</span>\n</span> in <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline9.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$G_{n,p}$\n</span></span>\n</span>\n</span> monochromatic in colour <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline10.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$i$\n</span></span>\n</span>\n</span>. There has been much interest in determining the asymptotic threshold function for this property. In several papers, Rödl and Ruciński determined a threshold function for the general symmetric case; that is, when <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline11.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$H_1 = \\cdots = H_r$\n</span></span>\n</span>\n</span>. A conjecture of Kohayakawa and Kreuter from 1997, if true, would fully resolve the asymmetric problem. Recently, the <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline12.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$1$\n</span></span>\n</span>\n</span>-statement of this conjecture was confirmed by Mousset, Nenadov and Samotij.</p>\n<p>Building on work of Marciniszyn, Skokan, Spöhel and Steger from 2009, we reduce the <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline13.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$0$\n</span></span>\n</span>\n</span>-statement of Kohayakawa and Kreuter’s conjecture to a certain deterministic subproblem. To demonstrate the potential of this approach, we show this subproblem can be resolved for almost all pairs of regular graphs. This therefore resolves the <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline14.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$0$\n</span></span>\n</span>\n</span>-statement for all such pairs of graphs.</p>","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548322000219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
In this paper, we study asymmetric Ramsey properties of the random graph
$G_{n,p}$
. Let
$r \in \mathbb{N}$
and
$H_1, \ldots, H_r$
be graphs. We write
$G_{n,p} \to (H_1, \ldots, H_r)$
to denote the property that whenever we colour the edges of
$G_{n,p}$
with colours from the set
$[r] \,{:\!=}\, \{1, \ldots, r\}$
there exists
$i \in [r]$
and a copy of
$H_i$
in
$G_{n,p}$
monochromatic in colour
$i$
. There has been much interest in determining the asymptotic threshold function for this property. In several papers, Rödl and Ruciński determined a threshold function for the general symmetric case; that is, when
$H_1 = \cdots = H_r$
. A conjecture of Kohayakawa and Kreuter from 1997, if true, would fully resolve the asymmetric problem. Recently, the
$1$
-statement of this conjecture was confirmed by Mousset, Nenadov and Samotij.
Building on work of Marciniszyn, Skokan, Spöhel and Steger from 2009, we reduce the
$0$
-statement of Kohayakawa and Kreuter’s conjecture to a certain deterministic subproblem. To demonstrate the potential of this approach, we show this subproblem can be resolved for almost all pairs of regular graphs. This therefore resolves the
$0$
-statement for all such pairs of graphs.