首页 > 最新文献

Combinatorics, Probability and Computing最新文献

英文 中文
On the Ramsey numbers of daisies II 关于雏菊的拉姆齐数 II
Pub Date : 2024-09-18 DOI: 10.1017/s0963548324000208
Marcelo Sales
A <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0963548324000208_inline1.png"/> <jats:tex-math> $(k+r)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-uniform hypergraph <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0963548324000208_inline2.png"/> <jats:tex-math> $H$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0963548324000208_inline3.png"/> <jats:tex-math> $(k+m)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> vertices is an <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0963548324000208_inline4.png"/> <jats:tex-math> $(r,m,k)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-daisy if there exists a partition of the vertices <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0963548324000208_inline5.png"/> <jats:tex-math> $V(H)=Kcup M$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0963548324000208_inline6.png"/> <jats:tex-math> $|K|=k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0963548324000208_inline7.png"/> <jats:tex-math> $|M|=m$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that the set of edges of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0963548324000208_inline8.png"/> <jats:tex-math> $H$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is all the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0963548324000208_inline9.png"/> <jats:tex-math> $(k+r)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-tuples <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0963548324000208_inline10.png"/> <jats:tex-math> $Kcup P$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0963548324000208_inline11.png"/> <jats:tex-math> $P$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is an <jats:inline-formula> <jats:alternatives
如果存在一个顶点分割 $V(H)=Kcup M$,且 $|K|=k$ , $|M|=m$,使得 $H$ 的边集是所有 $(k+r)$ 元组 $Kcup P$,其中 $P$ 是 $M$ 的 $r$ 元组,那么在 $(k+m)$ 顶点上的 $(k+r)$ 均匀超图 $H$ 是一个 $(r,m,k)$ 菊花图。我们得到了一个 $(r-2)$ 的指数迭代下限,即 2$ 颜色的 $(r,m,k)$ 雏菊的拉姆齐数。这与完整 $r$ 图的拉姆齐数的最佳下界的数量级相吻合。
{"title":"On the Ramsey numbers of daisies II","authors":"Marcelo Sales","doi":"10.1017/s0963548324000208","DOIUrl":"https://doi.org/10.1017/s0963548324000208","url":null,"abstract":"A &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000208_inline1.png\"/&gt; &lt;jats:tex-math&gt; $(k+r)$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;-uniform hypergraph &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000208_inline2.png\"/&gt; &lt;jats:tex-math&gt; $H$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; on &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000208_inline3.png\"/&gt; &lt;jats:tex-math&gt; $(k+m)$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; vertices is an &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000208_inline4.png\"/&gt; &lt;jats:tex-math&gt; $(r,m,k)$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;-daisy if there exists a partition of the vertices &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000208_inline5.png\"/&gt; &lt;jats:tex-math&gt; $V(H)=Kcup M$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; with &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000208_inline6.png\"/&gt; &lt;jats:tex-math&gt; $|K|=k$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;, &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000208_inline7.png\"/&gt; &lt;jats:tex-math&gt; $|M|=m$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; such that the set of edges of &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000208_inline8.png\"/&gt; &lt;jats:tex-math&gt; $H$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; is all the &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000208_inline9.png\"/&gt; &lt;jats:tex-math&gt; $(k+r)$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;-tuples &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000208_inline10.png\"/&gt; &lt;jats:tex-math&gt; $Kcup P$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;, where &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000208_inline11.png\"/&gt; &lt;jats:tex-math&gt; $P$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; is an &lt;jats:inline-formula&gt; &lt;jats:alternatives","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
List packing number of bounded degree graphs 有界阶数图的包装数列表
Pub Date : 2024-09-18 DOI: 10.1017/s0963548324000191
Stijn Cambie, Wouter Cames van Batenburg, Ewan Davies, Ross J. Kang
We investigate the list packing number of a graph, the least $k$ such that there are always $k$ disjoint proper list-colourings whenever we have lists all of size $k$ associated to the vertices. We are curious how the behaviour of the list packing number contrasts with that of the list chromatic number, particularly in the context of bounded degree graphs. The main question we pursue is whether every graph with maximum degree $Delta$ has list packing number at most $Delta +1$ . Our results highlight the subtleties of list packing and the barriers to, for example, pursuing a Brooks’-type theorem for the list packing number.
我们研究了图的列表包装数,即当我们有大小为 $k$ 的列表与顶点相关联时,总有 $k$ 不相交的适当列表着色的最小 $k$。我们很好奇列表包装数的行为与列表色度数的行为有什么不同,尤其是在有界度图的情况下。我们研究的主要问题是,是否每个最大度为 $Delta$ 的图的列表打包数都最多为 $Delta +1$ 。我们的结果凸显了列表打包的微妙之处,以及诸如寻求列表打包数布鲁克斯(Brooks'type)定理的障碍。
{"title":"List packing number of bounded degree graphs","authors":"Stijn Cambie, Wouter Cames van Batenburg, Ewan Davies, Ross J. Kang","doi":"10.1017/s0963548324000191","DOIUrl":"https://doi.org/10.1017/s0963548324000191","url":null,"abstract":"We investigate the list packing number of a graph, the least <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000191_inline1.png\"/> <jats:tex-math> $k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that there are always <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000191_inline2.png\"/> <jats:tex-math> $k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> disjoint proper list-colourings whenever we have lists all of size <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000191_inline3.png\"/> <jats:tex-math> $k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> associated to the vertices. We are curious how the behaviour of the list packing number contrasts with that of the list chromatic number, particularly in the context of bounded degree graphs. The main question we pursue is whether every graph with maximum degree <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000191_inline4.png\"/> <jats:tex-math> $Delta$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> has list packing number at most <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000191_inline5.png\"/> <jats:tex-math> $Delta +1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Our results highlight the subtleties of list packing and the barriers to, for example, pursuing a Brooks’-type theorem for the list packing number.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new formula for the determinant and bounds on its tensor and Waring ranks 行列式的新公式及其张量和瓦林等级的界限
Pub Date : 2024-09-18 DOI: 10.1017/s0963548324000233
Robin Houston, Adam P. Goucher, Nathaniel Johnston
We present a new explicit formula for the determinant that contains superexponentially fewer terms than the usual Leibniz formula. As an immediate corollary of our formula, we show that the tensor rank of the $n times n$ determinant tensor is no larger than the $n$ -th Bell number, which is much smaller than the previously best-known upper bounds when $n geq 4$ . Over fields of non-zero characteristic we obtain even tighter upper bounds, and we also slightly improve the known lower bounds. In particular, we show that the $4 times 4$ determinant over ${mathbb{F}}_2$ has tensor rank exactly equal to $12$ . Our results also improve upon the best-known upper bound for the Waring rank of the determinant when $n geq 17$ , and lead to a new family of axis-aligned polytopes that tile ${mathbb{R}}^n$ .
我们为行列式提出了一个新的显式公式,与通常的莱布尼兹公式相比,它包含的项数呈超指数减少。作为我们公式的直接推论,我们证明了 $n times n$ 行列式张量的张量秩不会大于 $n$ -th Bell 数,这比之前已知的当 $n geq 4$ 时的上限要小得多。在非零特征域上,我们得到了更严格的上界,而且还略微改进了已知的下界。特别是,我们证明了 ${mathbb{F}}_2$ 上的 $4 times 4$ 行列式的张量秩正好等于 $12$ 。我们的结果还改进了当 $n geq 17$ 时行列式的瓦林秩的已知上界,并引出了一个新的轴对齐多面体族,它可以平铺 ${mathbb{R}}^n$ 。
{"title":"A new formula for the determinant and bounds on its tensor and Waring ranks","authors":"Robin Houston, Adam P. Goucher, Nathaniel Johnston","doi":"10.1017/s0963548324000233","DOIUrl":"https://doi.org/10.1017/s0963548324000233","url":null,"abstract":"We present a new explicit formula for the determinant that contains superexponentially fewer terms than the usual Leibniz formula. As an immediate corollary of our formula, we show that the tensor rank of the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000233_inline1.png\"/> <jats:tex-math> $n times n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> determinant tensor is no larger than the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000233_inline2.png\"/> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-th Bell number, which is much smaller than the previously best-known upper bounds when <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000233_inline3.png\"/> <jats:tex-math> $n geq 4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Over fields of non-zero characteristic we obtain even tighter upper bounds, and we also slightly improve the known lower bounds. In particular, we show that the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000233_inline4.png\"/> <jats:tex-math> $4 times 4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> determinant over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000233_inline5.png\"/> <jats:tex-math> ${mathbb{F}}_2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> has tensor rank exactly equal to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000233_inline6.png\"/> <jats:tex-math> $12$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Our results also improve upon the best-known upper bound for the Waring rank of the determinant when <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000233_inline7.png\"/> <jats:tex-math> $n geq 17$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and lead to a new family of axis-aligned polytopes that tile <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000233_inline8.png\"/> <jats:tex-math> ${mathbb{R}}^n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Ramsey numbers of daisies I 关于拉姆齐雏菊的数量 I
Pub Date : 2024-09-18 DOI: 10.1017/s0963548324000221
Pavel Pudlák, Vojtech Rödl, Marcelo Sales
Daisies are a special type of hypergraph introduced by Bollobás, Leader and Malvenuto. An $r$ -daisy determined by a pair of disjoint sets $K$ and $M$ is the $(r+|K|)$ -uniform hypergraph ${Kcup P,{:}, Pin M^{(r)}}$ . Bollobás, Leader and Malvenuto initiated the study of Turán type density problems for daisies. This paper deals with Ramsey numbers of daisies, which are natural generalisations of classical Ramsey numbers. We discuss upper and lower bounds for the Ramsey number of $r$ -daisies and also for special cases where the size of the kernel is bounded.
雏形是波尔洛巴斯、利德和马尔维努托提出的一种特殊类型的超图。由一对不相交的集合 $K$ 和 $M$ 决定的 $r$ -雏形是 $(r+|K|)$ -均匀超图 ${Kcup P,{:}, Pin M^{(r)}}$ 。Bollobás、Leader 和 Malvenuto 发起了对菊花的 Turán 类型密度问题的研究。本文讨论的是雏菊的拉姆齐数,它是经典拉姆齐数的自然概括。我们讨论了 $r$ 雏菊的拉姆齐数的上界和下界,以及内核大小有界的特殊情况。
{"title":"On the Ramsey numbers of daisies I","authors":"Pavel Pudlák, Vojtech Rödl, Marcelo Sales","doi":"10.1017/s0963548324000221","DOIUrl":"https://doi.org/10.1017/s0963548324000221","url":null,"abstract":"Daisies are a special type of hypergraph introduced by Bollobás, Leader and Malvenuto. An <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000221_inline1.png\"/> <jats:tex-math> $r$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-daisy determined by a pair of disjoint sets <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000221_inline2.png\"/> <jats:tex-math> $K$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000221_inline3.png\"/> <jats:tex-math> $M$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000221_inline4.png\"/> <jats:tex-math> $(r+|K|)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-uniform hypergraph <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000221_inline5.png\"/> <jats:tex-math> ${Kcup P,{:}, Pin M^{(r)}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Bollobás, Leader and Malvenuto initiated the study of Turán type density problems for daisies. This paper deals with Ramsey numbers of daisies, which are natural generalisations of classical Ramsey numbers. We discuss upper and lower bounds for the Ramsey number of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000221_inline6.png\"/> <jats:tex-math> $r$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-daisies and also for special cases where the size of the kernel is bounded.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Counting spanning subgraphs in dense hypergraphs 计算密集超图中的跨越子图
Pub Date : 2024-05-30 DOI: 10.1017/s0963548324000178
Richard Montgomery, Matías Pavez-Signé
We give a simple method to estimate the number of distinct copies of some classes of spanning subgraphs in hypergraphs with a high minimum degree. In particular, for each $kgeq 2$ and $1leq ell leq k-1$ , we show that every $k$ -graph on $n$ vertices with minimum codegree at least begin{equation*} left {begin {array}{l@{quad}l} left (dfrac {1}{2}+o(1)right )n & text { if }(k-ell )mid k,[5pt] left (dfrac {1}{lceil frac {k}{k-ell }rceil (k-ell )}+o(1)right )n & text { if }(k-ell )nmid k, end {array} right . end{equation*} contains $exp!(nlog n-Theta (n))$ Hamilton $ell$ -cycles as long as $(k-ell )mid n$ . When $(k-ell )mid k$ , this gives a simple proof of a result of Glock, Gould, Joos, Kühn, and Osthus, while when
我们给出了一种简单的方法来估计具有高最小度的超图中某些类别的跨越子图的不同副本的数量。特别是,对于每个 $kgeq 2$ 和 $1leq ell leq k-1$ ,我们证明了在 $n$ 顶点上的每个 $k$ 图的最小度至少是 begin{equation*}.{left {array}{l@{quad}l}left (dfrac {1}{2}+o(1)right )n & text { if }(k-ell )mid k,[5pt] left (dfrac {1}{lceil frac {k}{k-ell }rceil (k-ell )}+o(1)right )n &;text { if }(k-ell )nmid k,end {array}right .end{equation*} 包含 $exp!(nlog n-Theta (n))$ Hamilton $ell$ -cycles as long as $(k-ell )mid n$ .当 $(k-ell )mid k$ 时,这给出了格洛克(Glock)、古尔德(Gould)、乔斯(Joos)、库恩(Kühn)和奥斯特胡斯(Osthus)的一个结果的简单证明,而当 $(k-ell )nmid k$ 时,这给出了一个比费伯(Ferber)、哈迪曼(Hardiman)和蒙德(Mond)给出的,或当 $ell lt k/2$ 时费伯(Ferber)、克里夫列维奇(Krivelevich)和苏达科夫(Sudakov)给出的,或当 $ell lt k/2$ 时,费伯(Ferber)、克里夫列维奇(Krivelevich)和苏达科夫(Sudakov)给出的更弱的计数,但对于一个渐近最优的最小鳕鱼度边界来说,这个计数是成立的。
{"title":"Counting spanning subgraphs in dense hypergraphs","authors":"Richard Montgomery, Matías Pavez-Signé","doi":"10.1017/s0963548324000178","DOIUrl":"https://doi.org/10.1017/s0963548324000178","url":null,"abstract":"We give a simple method to estimate the number of distinct copies of some classes of spanning subgraphs in hypergraphs with a high minimum degree. In particular, for each <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000178_inline1.png\"/> <jats:tex-math> $kgeq 2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000178_inline2.png\"/> <jats:tex-math> $1leq ell leq k-1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we show that every <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000178_inline3.png\"/> <jats:tex-math> $k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-graph on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000178_inline4.png\"/> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> vertices with minimum codegree at least<jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" position=\"float\" xlink:href=\"S0963548324000178_eqnU1.png\"/> <jats:tex-math> begin{equation*} left {begin {array}{l@{quad}l} left (dfrac {1}{2}+o(1)right )n &amp; text { if }(k-ell )mid k,[5pt] left (dfrac {1}{lceil frac {k}{k-ell }rceil (k-ell )}+o(1)right )n &amp; text { if }(k-ell )nmid k, end {array} right . end{equation*} </jats:tex-math> </jats:alternatives> </jats:disp-formula>contains <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000178_inline5.png\"/> <jats:tex-math> $exp!(nlog n-Theta (n))$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> Hamilton <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000178_inline6.png\"/> <jats:tex-math> $ell$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-cycles as long as <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000178_inline7.png\"/> <jats:tex-math> $(k-ell )mid n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. When <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000178_inline8.png\"/> <jats:tex-math> $(k-ell )mid k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, this gives a simple proof of a result of Glock, Gould, Joos, Kühn, and Osthus, while when <jats:inline-formula> <jats:al","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141188697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A generalisation of Varnavides’s theorem 瓦纳维德斯定理的一般化
Pub Date : 2024-05-29 DOI: 10.1017/s096354832400018x
Asaf Shapira

A linear equation $E$ is said to be sparse if there is $cgt 0$ so that every subset of $[n]$ of size $n^{1-c}$ contains a solution of $E$ in distinct integers. The problem of characterising the sparse equations, first raised by Ruzsa in the 90s, is one of the most important open problems in additive combinatorics. We say that $E$ in $k$ variables is abundant if every subset of $[n]$ of size $varepsilon n$ contains at least

如果存在 $cgt 0$,使得大小为 $n^{1-c}$ 的 $[n]$ 的每个子集都包含一个不同整数的 $E$ 解,那么线性方程 $E$ 就被称为稀疏方程。稀疏方程的特征问题是鲁兹萨(Ruzsa)在上世纪 90 年代首次提出的,是加法组合论中最重要的未决问题之一。如果大小为 $varepsilon n$ 的 $[n]$ 子集至少包含 $text{poly}(varepsilon )cdot n^{k-1}$ 的解,我们就说 $k$ 变量中的 $E$ 是丰富的。显然,每一个丰富的 $E$ 都是稀疏的,吉朗、赫尔利、伊林沃斯和米歇尔询问反向蕴涵是否也成立。在本论文中,我们证明了四变量中的每一个 $E$ 都是稀疏的。我们将进一步讨论这个问题的广义,它适用于所有线性方程。
{"title":"A generalisation of Varnavides’s theorem","authors":"Asaf Shapira","doi":"10.1017/s096354832400018x","DOIUrl":"https://doi.org/10.1017/s096354832400018x","url":null,"abstract":"<p>A linear equation <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$E$</span></span></img></span></span> is said to be <span>sparse</span> if there is <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$cgt 0$</span></span></img></span></span> so that every subset of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$[n]$</span></span></img></span></span> of size <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$n^{1-c}$</span></span></img></span></span> contains a solution of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$E$</span></span></img></span></span> in distinct integers. The problem of characterising the sparse equations, first raised by Ruzsa in the 90s, is one of the most important open problems in additive combinatorics. We say that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$E$</span></span></img></span></span> in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$k$</span></span></img></span></span> variables is <span>abundant</span> if every subset of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$[n]$</span></span></img></span></span> of size <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$varepsilon n$</span></span></img></span></span> contains at least <span><span><img data-mimesubtype","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141167599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Noise sensitivity of the minimum spanning tree of the complete graph 完整图最小生成树的噪声敏感度
Pub Date : 2024-05-23 DOI: 10.1017/s0963548324000129
Omer Israeli, Yuval Peled
We study the noise sensitivity of the minimum spanning tree (MST) of the $n$ -vertex complete graph when edges are assigned independent random weights. It is known that when the graph distance is rescaled by $n^{1/3}$ and vertices are given a uniform measure, the MST converges in distribution in the Gromov–Hausdorff–Prokhorov (GHP) topology. We prove that if the weight of each edge is resampled independently with probability $varepsilon gg n^{-1/3}$ , then the pair of rescaled minimum spanning trees – before and after the noise – converges in distribution to independent random spaces. Conversely, if $varepsilon ll n^{-1/3}$ , the GHP distance between the rescaled trees goes to $0$ in probability. This implies the noise sensitivity and stability for every property of the MST that corresponds to a continuity set of the random limit. The noise threshold of $n^{-1/3}$ coincides with the critical window of the Erdős-Rényi random graphs. In fact, these results follow from an analog theorem we prove regarding the minimum spanning forest of critical random graphs.
我们研究了当给边分配独立随机权重时,$n$顶点完整图的最小生成树(MST)的噪声敏感性。众所周知,当图距离被 $n^{1/3}$ 重标量且顶点被赋予统一度量时,最小生成树会在格罗莫夫-豪斯多夫-普罗霍罗夫(GHP)拓扑中收敛分布。我们证明,如果以 $varepsilon gg n^{-1/3}$ 的概率对每条边的权重进行独立重采样,那么一对重标的最小生成树--在噪声之前和之后--在分布上收敛于独立的随机空间。反之,如果 $varepsilon ll n^{-1/3}$,则重标的树之间的 GHP 距离在概率上变为 $0$。这意味着与随机极限的连续集相对应的 MST 的每个属性都具有噪声敏感性和稳定性。噪声阈值 $n^{-1/3}$ 与厄尔多斯-雷尼随机图的临界窗口相吻合。事实上,这些结果来自于我们证明的临界随机图最小跨度林的类似定理。
{"title":"Noise sensitivity of the minimum spanning tree of the complete graph","authors":"Omer Israeli, Yuval Peled","doi":"10.1017/s0963548324000129","DOIUrl":"https://doi.org/10.1017/s0963548324000129","url":null,"abstract":"We study the noise sensitivity of the minimum spanning tree (MST) of the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000129_inline1.png\"/> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-vertex complete graph when edges are assigned independent random weights. It is known that when the graph distance is rescaled by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000129_inline2.png\"/> <jats:tex-math> $n^{1/3}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and vertices are given a uniform measure, the MST converges in distribution in the Gromov–Hausdorff–Prokhorov (GHP) topology. We prove that if the weight of each edge is resampled independently with probability <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000129_inline3.png\"/> <jats:tex-math> $varepsilon gg n^{-1/3}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then the pair of rescaled minimum spanning trees – before and after the noise – converges in distribution to independent random spaces. Conversely, if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000129_inline4.png\"/> <jats:tex-math> $varepsilon ll n^{-1/3}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the GHP distance between the rescaled trees goes to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000129_inline5.png\"/> <jats:tex-math> $0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> in probability. This implies the noise sensitivity and stability for every property of the MST that corresponds to a continuity set of the random limit. The noise threshold of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000129_inline6.png\"/> <jats:tex-math> $n^{-1/3}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> coincides with the critical window of the Erdős-Rényi random graphs. In fact, these results follow from an analog theorem we prove regarding the minimum spanning forest of critical random graphs.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141148786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rainbow Hamiltonicity in uniformly coloured perturbed digraphs 均匀彩色扰动数图中的彩虹汉密尔顿性
Pub Date : 2024-05-13 DOI: 10.1017/s0963548324000130
Kyriakos Katsamaktsis, Shoham Letzter, Amedeo Sgueglia
We investigate the existence of a rainbow Hamilton cycle in a uniformly edge-coloured randomly perturbed digraph. We show that for every $delta in (0,1)$ there exists $C = C(delta ) gt 0$ such that the following holds. Let $D_0$ be an $n$ -vertex digraph with minimum semidegree at least $delta n$ and suppose that each edge of the union of $D_0$ with a copy of the random digraph $mathbf{D}(n,C/n)$ on the same vertex set gets a colour in $[n]$ independently and uniformly at random. Then, with high probability, $D_0 cup mathbf{D}(n,C/n)$ has a rainbow directed Hamilton cycle. This improves a result of Aigner-Horev and Hefetz ((2021) SIAM J. Discrete Math.35(3) 1569–1577), who proved the same in the undirected setting when the edges are coloured
我们研究了均匀边色随机扰动数字图中彩虹汉密尔顿循环的存在性。我们证明,对于 (0,1)$ 中的每一个 $delta 都存在 $C = C(delta ) gt 0$,从而下面的条件成立。假设 $D_0$ 是一个 $n$ 有顶点的图,其最小半阶数至少为 $delta n$,并且假设 $D_0$ 与随机图 $mathbf{D}(n,C/n)$ 在同一顶点集上的副本的结合的每条边都在 $[n]$ 中独立地、均匀地随机得到一种颜色。那么,很有可能 $D_0 cup mathbf{D}(n,C/n)$ 有一个彩虹有向汉密尔顿循环。这改进了 Aigner-Horev 和 Hefetz 的结果((2021) SIAM J. Discrete Math.35(3) 1569-1577),他们在无向设置中证明了当边在一组 $(1 + varepsilon )n$ 颜色中均匀着色时的相同结果。
{"title":"Rainbow Hamiltonicity in uniformly coloured perturbed digraphs","authors":"Kyriakos Katsamaktsis, Shoham Letzter, Amedeo Sgueglia","doi":"10.1017/s0963548324000130","DOIUrl":"https://doi.org/10.1017/s0963548324000130","url":null,"abstract":"We investigate the existence of a rainbow Hamilton cycle in a uniformly edge-coloured randomly perturbed digraph. We show that for every <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000130_inline1.png\"/> <jats:tex-math> $delta in (0,1)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> there exists <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000130_inline2.png\"/> <jats:tex-math> $C = C(delta ) gt 0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that the following holds. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000130_inline3.png\"/> <jats:tex-math> $D_0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be an <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000130_inline4.png\"/> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-vertex digraph with minimum semidegree at least <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000130_inline5.png\"/> <jats:tex-math> $delta n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and suppose that each edge of the union of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000130_inline6.png\"/> <jats:tex-math> $D_0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with a copy of the random digraph <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000130_inline7.png\"/> <jats:tex-math> $mathbf{D}(n,C/n)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> on the same vertex set gets a colour in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000130_inline8.png\"/> <jats:tex-math> $[n]$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> independently and uniformly at random. Then, with high probability, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000130_inline9.png\"/> <jats:tex-math> $D_0 cup mathbf{D}(n,C/n)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> has a rainbow directed Hamilton cycle. This improves a result of Aigner-Horev and Hefetz ((2021) <jats:italic>SIAM J. Discrete Math.</jats:italic>35(3) 1569–1577), who proved the same in the undirected setting when the edges are coloured","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maximum chordal subgraphs of random graphs 随机图的最大和弦子图
Pub Date : 2024-05-03 DOI: 10.1017/s0963548324000154
Michael Krivelevich, Maksim Zhukovskii
We find asymptotics of the maximum size of a chordal subgraph in a binomial random graph $G(n,p)$ , for $p=mathrm{const}$ and $p=n^{-alpha +o(1)}$ .
在 $p=mathrm{const}$ 和 $p=n^{-alpha +o(1)}$ 时,我们发现了二叉随机图 $G(n,p)$ 中弦子图最大尺寸的渐近线。
{"title":"Maximum chordal subgraphs of random graphs","authors":"Michael Krivelevich, Maksim Zhukovskii","doi":"10.1017/s0963548324000154","DOIUrl":"https://doi.org/10.1017/s0963548324000154","url":null,"abstract":"We find asymptotics of the maximum size of a chordal subgraph in a binomial random graph <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000154_inline1.png\"/> <jats:tex-math> $G(n,p)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000154_inline2.png\"/> <jats:tex-math> $p=mathrm{const}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000154_inline3.png\"/> <jats:tex-math> $p=n^{-alpha +o(1)}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140840719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Turán problems in pseudorandom graphs 伪随机图中的图兰问题
Pub Date : 2024-04-29 DOI: 10.1017/s0963548324000142
Xizhi Liu, Dhruv Mubayi, David Munhá Correia
Given a graph $F$ , we consider the problem of determining the densest possible pseudorandom graph that contains no copy of $F$ . We provide an embedding procedure that improves a general result of Conlon, Fox, and Zhao which gives an upper bound on the density. In particular, our result implies that optimally pseudorandom graphs with density greater than $n^{-1/3}$ must contain a copy of the Peterson graph, while the previous best result gives the bound $n^{-1/4}$ . Moreover, we conjecture that the exponent $1/3$ in our bound is tight. We also construct the densest known pseudorandom $K_{2,3}$ -free graphs that are also triangle-free. Finally, we give a different proof for the densest known construction of clique-free pseudorandom graphs due to Bishnoi, Ihringer, and Pepe that they have no large clique.
给定一个图 $F$,我们考虑的问题是确定不包含 $F$ 副本的密度最大的伪随机图。我们提供了一种嵌入程序,该程序改进了康伦、福克斯和赵的一般结果,后者给出了密度的上限。特别是,我们的结果意味着密度大于 $n^{-1/3}$ 的最优伪随机图必须包含彼得森图的一个副本,而之前的最佳结果给出的边界是 $n^{-1/4}$ 。此外,我们猜想我们的约束中的指数 1/3$ 是紧密的。我们还构建了已知最密集的无 K_{2,3}$ 的伪随机图,这些图也是无三角形的。最后,我们对已知最密集的无簇伪随机图的构造给出了一个不同的证明,该证明是由比什诺伊、伊林格尔和佩佩提出的,即它们没有大的簇。
{"title":"Turán problems in pseudorandom graphs","authors":"Xizhi Liu, Dhruv Mubayi, David Munhá Correia","doi":"10.1017/s0963548324000142","DOIUrl":"https://doi.org/10.1017/s0963548324000142","url":null,"abstract":"Given a graph <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000142_inline1.png\"/> <jats:tex-math> $F$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we consider the problem of determining the densest possible pseudorandom graph that contains no copy of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000142_inline2.png\"/> <jats:tex-math> $F$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We provide an embedding procedure that improves a general result of Conlon, Fox, and Zhao which gives an upper bound on the density. In particular, our result implies that optimally pseudorandom graphs with density greater than <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000142_inline3.png\"/> <jats:tex-math> $n^{-1/3}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> must contain a copy of the Peterson graph, while the previous best result gives the bound <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000142_inline4.png\"/> <jats:tex-math> $n^{-1/4}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Moreover, we conjecture that the exponent <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000142_inline5.png\"/> <jats:tex-math> $1/3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> in our bound is tight. We also construct the densest known pseudorandom <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000142_inline6.png\"/> <jats:tex-math> $K_{2,3}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-free graphs that are also triangle-free. Finally, we give a different proof for the densest known construction of clique-free pseudorandom graphs due to Bishnoi, Ihringer, and Pepe that they have no large clique.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140812125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Combinatorics, Probability and Computing
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1