Pub Date : 2024-09-18DOI: 10.1017/s0963548324000191
Stijn Cambie, Wouter Cames van Batenburg, Ewan Davies, Ross J. Kang
We investigate the list packing number of a graph, the least $k$ such that there are always $k$ disjoint proper list-colourings whenever we have lists all of size $k$ associated to the vertices. We are curious how the behaviour of the list packing number contrasts with that of the list chromatic number, particularly in the context of bounded degree graphs. The main question we pursue is whether every graph with maximum degree $Delta$ has list packing number at most $Delta +1$ . Our results highlight the subtleties of list packing and the barriers to, for example, pursuing a Brooks’-type theorem for the list packing number.
{"title":"List packing number of bounded degree graphs","authors":"Stijn Cambie, Wouter Cames van Batenburg, Ewan Davies, Ross J. Kang","doi":"10.1017/s0963548324000191","DOIUrl":"https://doi.org/10.1017/s0963548324000191","url":null,"abstract":"We investigate the list packing number of a graph, the least <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000191_inline1.png\"/> <jats:tex-math> $k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that there are always <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000191_inline2.png\"/> <jats:tex-math> $k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> disjoint proper list-colourings whenever we have lists all of size <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000191_inline3.png\"/> <jats:tex-math> $k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> associated to the vertices. We are curious how the behaviour of the list packing number contrasts with that of the list chromatic number, particularly in the context of bounded degree graphs. The main question we pursue is whether every graph with maximum degree <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000191_inline4.png\"/> <jats:tex-math> $Delta$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> has list packing number at most <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000191_inline5.png\"/> <jats:tex-math> $Delta +1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Our results highlight the subtleties of list packing and the barriers to, for example, pursuing a Brooks’-type theorem for the list packing number.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":"28 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.1017/s0963548324000233
Robin Houston, Adam P. Goucher, Nathaniel Johnston
We present a new explicit formula for the determinant that contains superexponentially fewer terms than the usual Leibniz formula. As an immediate corollary of our formula, we show that the tensor rank of the $n times n$ determinant tensor is no larger than the $n$ -th Bell number, which is much smaller than the previously best-known upper bounds when $n geq 4$ . Over fields of non-zero characteristic we obtain even tighter upper bounds, and we also slightly improve the known lower bounds. In particular, we show that the $4 times 4$ determinant over ${mathbb{F}}_2$ has tensor rank exactly equal to $12$ . Our results also improve upon the best-known upper bound for the Waring rank of the determinant when $n geq 17$ , and lead to a new family of axis-aligned polytopes that tile ${mathbb{R}}^n$ .
我们为行列式提出了一个新的显式公式,与通常的莱布尼兹公式相比,它包含的项数呈超指数减少。作为我们公式的直接推论,我们证明了 $n times n$ 行列式张量的张量秩不会大于 $n$ -th Bell 数,这比之前已知的当 $n geq 4$ 时的上限要小得多。在非零特征域上,我们得到了更严格的上界,而且还略微改进了已知的下界。特别是,我们证明了 ${mathbb{F}}_2$ 上的 $4 times 4$ 行列式的张量秩正好等于 $12$ 。我们的结果还改进了当 $n geq 17$ 时行列式的瓦林秩的已知上界,并引出了一个新的轴对齐多面体族,它可以平铺 ${mathbb{R}}^n$ 。
{"title":"A new formula for the determinant and bounds on its tensor and Waring ranks","authors":"Robin Houston, Adam P. Goucher, Nathaniel Johnston","doi":"10.1017/s0963548324000233","DOIUrl":"https://doi.org/10.1017/s0963548324000233","url":null,"abstract":"We present a new explicit formula for the determinant that contains superexponentially fewer terms than the usual Leibniz formula. As an immediate corollary of our formula, we show that the tensor rank of the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000233_inline1.png\"/> <jats:tex-math> $n times n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> determinant tensor is no larger than the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000233_inline2.png\"/> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-th Bell number, which is much smaller than the previously best-known upper bounds when <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000233_inline3.png\"/> <jats:tex-math> $n geq 4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Over fields of non-zero characteristic we obtain even tighter upper bounds, and we also slightly improve the known lower bounds. In particular, we show that the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000233_inline4.png\"/> <jats:tex-math> $4 times 4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> determinant over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000233_inline5.png\"/> <jats:tex-math> ${mathbb{F}}_2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> has tensor rank exactly equal to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000233_inline6.png\"/> <jats:tex-math> $12$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Our results also improve upon the best-known upper bound for the Waring rank of the determinant when <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000233_inline7.png\"/> <jats:tex-math> $n geq 17$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and lead to a new family of axis-aligned polytopes that tile <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000233_inline8.png\"/> <jats:tex-math> ${mathbb{R}}^n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":"26 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.1017/s0963548324000221
Pavel Pudlák, Vojtech Rödl, Marcelo Sales
Daisies are a special type of hypergraph introduced by Bollobás, Leader and Malvenuto. An $r$ -daisy determined by a pair of disjoint sets $K$ and $M$ is the $(r+|K|)$ -uniform hypergraph ${Kcup P,{:}, Pin M^{(r)}}$ . Bollobás, Leader and Malvenuto initiated the study of Turán type density problems for daisies. This paper deals with Ramsey numbers of daisies, which are natural generalisations of classical Ramsey numbers. We discuss upper and lower bounds for the Ramsey number of $r$ -daisies and also for special cases where the size of the kernel is bounded.
{"title":"On the Ramsey numbers of daisies I","authors":"Pavel Pudlák, Vojtech Rödl, Marcelo Sales","doi":"10.1017/s0963548324000221","DOIUrl":"https://doi.org/10.1017/s0963548324000221","url":null,"abstract":"Daisies are a special type of hypergraph introduced by Bollobás, Leader and Malvenuto. An <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000221_inline1.png\"/> <jats:tex-math> $r$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-daisy determined by a pair of disjoint sets <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000221_inline2.png\"/> <jats:tex-math> $K$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000221_inline3.png\"/> <jats:tex-math> $M$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000221_inline4.png\"/> <jats:tex-math> $(r+|K|)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-uniform hypergraph <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000221_inline5.png\"/> <jats:tex-math> ${Kcup P,{:}, Pin M^{(r)}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Bollobás, Leader and Malvenuto initiated the study of Turán type density problems for daisies. This paper deals with Ramsey numbers of daisies, which are natural generalisations of classical Ramsey numbers. We discuss upper and lower bounds for the Ramsey number of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000221_inline6.png\"/> <jats:tex-math> $r$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-daisies and also for special cases where the size of the kernel is bounded.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":"197 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-30DOI: 10.1017/s0963548324000178
Richard Montgomery, Matías Pavez-Signé
We give a simple method to estimate the number of distinct copies of some classes of spanning subgraphs in hypergraphs with a high minimum degree. In particular, for each $kgeq 2$ and $1leq ell leq k-1$ , we show that every $k$ -graph on $n$ vertices with minimum codegree at least begin{equation*} left {begin {array}{l@{quad}l} left (dfrac {1}{2}+o(1)right )n & text { if }(k-ell )mid k,[5pt] left (dfrac {1}{lceil frac {k}{k-ell }rceil (k-ell )}+o(1)right )n & text { if }(k-ell )nmid k, end {array} right . end{equation*} contains $exp!(nlog n-Theta (n))$ Hamilton $ell$ -cycles as long as $(k-ell )mid n$ . When $(k-ell )mid k$ , this gives a simple proof of a result of Glock, Gould, Joos, Kühn, and Osthus, while when
我们给出了一种简单的方法来估计具有高最小度的超图中某些类别的跨越子图的不同副本的数量。特别是,对于每个 $kgeq 2$ 和 $1leq ell leq k-1$ ,我们证明了在 $n$ 顶点上的每个 $k$ 图的最小度至少是 begin{equation*}.{left {array}{l@{quad}l}left (dfrac {1}{2}+o(1)right )n & text { if }(k-ell )mid k,[5pt] left (dfrac {1}{lceil frac {k}{k-ell }rceil (k-ell )}+o(1)right )n &;text { if }(k-ell )nmid k,end {array}right .end{equation*} 包含 $exp!(nlog n-Theta (n))$ Hamilton $ell$ -cycles as long as $(k-ell )mid n$ .当 $(k-ell )mid k$ 时,这给出了格洛克(Glock)、古尔德(Gould)、乔斯(Joos)、库恩(Kühn)和奥斯特胡斯(Osthus)的一个结果的简单证明,而当 $(k-ell )nmid k$ 时,这给出了一个比费伯(Ferber)、哈迪曼(Hardiman)和蒙德(Mond)给出的,或当 $ell lt k/2$ 时费伯(Ferber)、克里夫列维奇(Krivelevich)和苏达科夫(Sudakov)给出的,或当 $ell lt k/2$ 时,费伯(Ferber)、克里夫列维奇(Krivelevich)和苏达科夫(Sudakov)给出的更弱的计数,但对于一个渐近最优的最小鳕鱼度边界来说,这个计数是成立的。
{"title":"Counting spanning subgraphs in dense hypergraphs","authors":"Richard Montgomery, Matías Pavez-Signé","doi":"10.1017/s0963548324000178","DOIUrl":"https://doi.org/10.1017/s0963548324000178","url":null,"abstract":"We give a simple method to estimate the number of distinct copies of some classes of spanning subgraphs in hypergraphs with a high minimum degree. In particular, for each <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000178_inline1.png\"/> <jats:tex-math> $kgeq 2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000178_inline2.png\"/> <jats:tex-math> $1leq ell leq k-1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we show that every <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000178_inline3.png\"/> <jats:tex-math> $k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-graph on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000178_inline4.png\"/> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> vertices with minimum codegree at least<jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" position=\"float\" xlink:href=\"S0963548324000178_eqnU1.png\"/> <jats:tex-math> begin{equation*} left {begin {array}{l@{quad}l} left (dfrac {1}{2}+o(1)right )n & text { if }(k-ell )mid k,[5pt] left (dfrac {1}{lceil frac {k}{k-ell }rceil (k-ell )}+o(1)right )n & text { if }(k-ell )nmid k, end {array} right . end{equation*} </jats:tex-math> </jats:alternatives> </jats:disp-formula>contains <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000178_inline5.png\"/> <jats:tex-math> $exp!(nlog n-Theta (n))$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> Hamilton <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000178_inline6.png\"/> <jats:tex-math> $ell$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-cycles as long as <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000178_inline7.png\"/> <jats:tex-math> $(k-ell )mid n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. When <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000178_inline8.png\"/> <jats:tex-math> $(k-ell )mid k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, this gives a simple proof of a result of Glock, Gould, Joos, Kühn, and Osthus, while when <jats:inline-formula> <jats:al","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":"76 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141188697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-29DOI: 10.1017/s096354832400018x
Asaf Shapira
A linear equation $E$ is said to be sparse if there is $cgt 0$ so that every subset of $[n]$ of size $n^{1-c}$ contains a solution of $E$ in distinct integers. The problem of characterising the sparse equations, first raised by Ruzsa in the 90s, is one of the most important open problems in additive combinatorics. We say that $E$ in $k$ variables is abundant if every subset of $[n]$ of size $varepsilon n$ contains at least
{"title":"A generalisation of Varnavides’s theorem","authors":"Asaf Shapira","doi":"10.1017/s096354832400018x","DOIUrl":"https://doi.org/10.1017/s096354832400018x","url":null,"abstract":"<p>A linear equation <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$E$</span></span></img></span></span> is said to be <span>sparse</span> if there is <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$cgt 0$</span></span></img></span></span> so that every subset of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$[n]$</span></span></img></span></span> of size <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$n^{1-c}$</span></span></img></span></span> contains a solution of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$E$</span></span></img></span></span> in distinct integers. The problem of characterising the sparse equations, first raised by Ruzsa in the 90s, is one of the most important open problems in additive combinatorics. We say that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$E$</span></span></img></span></span> in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$k$</span></span></img></span></span> variables is <span>abundant</span> if every subset of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$[n]$</span></span></img></span></span> of size <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$varepsilon n$</span></span></img></span></span> contains at least <span><span><img data-mimesubtype","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":"51 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141167599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-23DOI: 10.1017/s0963548324000129
Omer Israeli, Yuval Peled
We study the noise sensitivity of the minimum spanning tree (MST) of the $n$ -vertex complete graph when edges are assigned independent random weights. It is known that when the graph distance is rescaled by $n^{1/3}$ and vertices are given a uniform measure, the MST converges in distribution in the Gromov–Hausdorff–Prokhorov (GHP) topology. We prove that if the weight of each edge is resampled independently with probability $varepsilon gg n^{-1/3}$ , then the pair of rescaled minimum spanning trees – before and after the noise – converges in distribution to independent random spaces. Conversely, if $varepsilon ll n^{-1/3}$ , the GHP distance between the rescaled trees goes to $0$ in probability. This implies the noise sensitivity and stability for every property of the MST that corresponds to a continuity set of the random limit. The noise threshold of $n^{-1/3}$ coincides with the critical window of the Erdős-Rényi random graphs. In fact, these results follow from an analog theorem we prove regarding the minimum spanning forest of critical random graphs.
{"title":"Noise sensitivity of the minimum spanning tree of the complete graph","authors":"Omer Israeli, Yuval Peled","doi":"10.1017/s0963548324000129","DOIUrl":"https://doi.org/10.1017/s0963548324000129","url":null,"abstract":"We study the noise sensitivity of the minimum spanning tree (MST) of the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000129_inline1.png\"/> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-vertex complete graph when edges are assigned independent random weights. It is known that when the graph distance is rescaled by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000129_inline2.png\"/> <jats:tex-math> $n^{1/3}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and vertices are given a uniform measure, the MST converges in distribution in the Gromov–Hausdorff–Prokhorov (GHP) topology. We prove that if the weight of each edge is resampled independently with probability <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000129_inline3.png\"/> <jats:tex-math> $varepsilon gg n^{-1/3}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then the pair of rescaled minimum spanning trees – before and after the noise – converges in distribution to independent random spaces. Conversely, if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000129_inline4.png\"/> <jats:tex-math> $varepsilon ll n^{-1/3}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the GHP distance between the rescaled trees goes to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000129_inline5.png\"/> <jats:tex-math> $0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> in probability. This implies the noise sensitivity and stability for every property of the MST that corresponds to a continuity set of the random limit. The noise threshold of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000129_inline6.png\"/> <jats:tex-math> $n^{-1/3}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> coincides with the critical window of the Erdős-Rényi random graphs. In fact, these results follow from an analog theorem we prove regarding the minimum spanning forest of critical random graphs.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141148786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We investigate the existence of a rainbow Hamilton cycle in a uniformly edge-coloured randomly perturbed digraph. We show that for every $delta in (0,1)$ there exists $C = C(delta ) gt 0$ such that the following holds. Let $D_0$ be an $n$ -vertex digraph with minimum semidegree at least $delta n$ and suppose that each edge of the union of $D_0$ with a copy of the random digraph $mathbf{D}(n,C/n)$ on the same vertex set gets a colour in $[n]$ independently and uniformly at random. Then, with high probability, $D_0 cup mathbf{D}(n,C/n)$ has a rainbow directed Hamilton cycle. This improves a result of Aigner-Horev and Hefetz ((2021) SIAM J. Discrete Math.35(3) 1569–1577), who proved the same in the undirected setting when the edges are coloured
{"title":"Rainbow Hamiltonicity in uniformly coloured perturbed digraphs","authors":"Kyriakos Katsamaktsis, Shoham Letzter, Amedeo Sgueglia","doi":"10.1017/s0963548324000130","DOIUrl":"https://doi.org/10.1017/s0963548324000130","url":null,"abstract":"We investigate the existence of a rainbow Hamilton cycle in a uniformly edge-coloured randomly perturbed digraph. We show that for every <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000130_inline1.png\"/> <jats:tex-math> $delta in (0,1)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> there exists <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000130_inline2.png\"/> <jats:tex-math> $C = C(delta ) gt 0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that the following holds. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000130_inline3.png\"/> <jats:tex-math> $D_0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be an <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000130_inline4.png\"/> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-vertex digraph with minimum semidegree at least <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000130_inline5.png\"/> <jats:tex-math> $delta n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and suppose that each edge of the union of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000130_inline6.png\"/> <jats:tex-math> $D_0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with a copy of the random digraph <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000130_inline7.png\"/> <jats:tex-math> $mathbf{D}(n,C/n)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> on the same vertex set gets a colour in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000130_inline8.png\"/> <jats:tex-math> $[n]$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> independently and uniformly at random. Then, with high probability, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000130_inline9.png\"/> <jats:tex-math> $D_0 cup mathbf{D}(n,C/n)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> has a rainbow directed Hamilton cycle. This improves a result of Aigner-Horev and Hefetz ((2021) <jats:italic>SIAM J. Discrete Math.</jats:italic>35(3) 1569–1577), who proved the same in the undirected setting when the edges are coloured","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":"44 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Maximum chordal subgraphs of random graphs","authors":"Michael Krivelevich, Maksim Zhukovskii","doi":"10.1017/s0963548324000154","DOIUrl":"https://doi.org/10.1017/s0963548324000154","url":null,"abstract":"We find asymptotics of the maximum size of a chordal subgraph in a binomial random graph <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000154_inline1.png\"/> <jats:tex-math> $G(n,p)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000154_inline2.png\"/> <jats:tex-math> $p=mathrm{const}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000154_inline3.png\"/> <jats:tex-math> $p=n^{-alpha +o(1)}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":"87 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140840719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-29DOI: 10.1017/s0963548324000142
Xizhi Liu, Dhruv Mubayi, David Munhá Correia
Given a graph $F$ , we consider the problem of determining the densest possible pseudorandom graph that contains no copy of $F$ . We provide an embedding procedure that improves a general result of Conlon, Fox, and Zhao which gives an upper bound on the density. In particular, our result implies that optimally pseudorandom graphs with density greater than $n^{-1/3}$ must contain a copy of the Peterson graph, while the previous best result gives the bound $n^{-1/4}$ . Moreover, we conjecture that the exponent $1/3$ in our bound is tight. We also construct the densest known pseudorandom $K_{2,3}$ -free graphs that are also triangle-free. Finally, we give a different proof for the densest known construction of clique-free pseudorandom graphs due to Bishnoi, Ihringer, and Pepe that they have no large clique.
{"title":"Turán problems in pseudorandom graphs","authors":"Xizhi Liu, Dhruv Mubayi, David Munhá Correia","doi":"10.1017/s0963548324000142","DOIUrl":"https://doi.org/10.1017/s0963548324000142","url":null,"abstract":"Given a graph <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000142_inline1.png\"/> <jats:tex-math> $F$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we consider the problem of determining the densest possible pseudorandom graph that contains no copy of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000142_inline2.png\"/> <jats:tex-math> $F$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We provide an embedding procedure that improves a general result of Conlon, Fox, and Zhao which gives an upper bound on the density. In particular, our result implies that optimally pseudorandom graphs with density greater than <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000142_inline3.png\"/> <jats:tex-math> $n^{-1/3}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> must contain a copy of the Peterson graph, while the previous best result gives the bound <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000142_inline4.png\"/> <jats:tex-math> $n^{-1/4}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Moreover, we conjecture that the exponent <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000142_inline5.png\"/> <jats:tex-math> $1/3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> in our bound is tight. We also construct the densest known pseudorandom <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000142_inline6.png\"/> <jats:tex-math> $K_{2,3}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-free graphs that are also triangle-free. Finally, we give a different proof for the densest known construction of clique-free pseudorandom graphs due to Bishnoi, Ihringer, and Pepe that they have no large clique.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":"35 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140812125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}