Tom Hutchcroft, Alexander Kent, Petar Nizić-Nikolac
{"title":"The bunkbed conjecture holds in the limit","authors":"Tom Hutchcroft, Alexander Kent, Petar Nizić-Nikolac","doi":"10.1017/s096354832200027x","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S096354832200027X:S096354832200027X_inline2.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$G=(V,E)$\n</span></span>\n</span>\n</span> be a countable graph. The Bunkbed graph of <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S096354832200027X:S096354832200027X_inline3.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$G$\n</span></span>\n</span>\n</span> is the product graph <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S096354832200027X:S096354832200027X_inline4.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$G \\times K_2$\n</span></span>\n</span>\n</span>, which has vertex set <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S096354832200027X:S096354832200027X_inline5.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$V\\times \\{0,1\\}$\n</span></span>\n</span>\n</span> with “horizontal” edges inherited from <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S096354832200027X:S096354832200027X_inline6.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$G$\n</span></span>\n</span>\n</span> and additional “vertical” edges connecting <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S096354832200027X:S096354832200027X_inline7.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$(w,0)$\n</span></span>\n</span>\n</span> and <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S096354832200027X:S096354832200027X_inline8.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$(w,1)$\n</span></span>\n</span>\n</span> for each <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S096354832200027X:S096354832200027X_inline9.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$w \\in V$\n</span></span>\n</span>\n</span>. Kasteleyn’s Bunkbed conjecture states that for each <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S096354832200027X:S096354832200027X_inline10.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$u,v \\in V$\n</span></span>\n</span>\n</span> and <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S096354832200027X:S096354832200027X_inline11.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$p\\in [0,1]$\n</span></span>\n</span>\n</span>, the vertex <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S096354832200027X:S096354832200027X_inline12.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$(u,0)$\n</span></span>\n</span>\n</span> is at least as likely to be connected to <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S096354832200027X:S096354832200027X_inline13.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$(v,0)$\n</span></span>\n</span>\n</span> as to <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S096354832200027X:S096354832200027X_inline14.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$(v,1)$\n</span></span>\n</span>\n</span> under Bernoulli-<span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S096354832200027X:S096354832200027X_inline15.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$p$\n</span></span>\n</span>\n</span> bond percolation on the bunkbed graph. We prove that the conjecture holds in the <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S096354832200027X:S096354832200027X_inline16.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$p \\uparrow 1$\n</span></span>\n</span>\n</span> limit in the sense that for each finite graph <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S096354832200027X:S096354832200027X_inline17.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$G$\n</span></span>\n</span>\n</span> there exists <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S096354832200027X:S096354832200027X_inline18.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$\\varepsilon (G)\\gt 0$\n</span></span>\n</span>\n</span> such that the bunkbed conjecture holds for <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S096354832200027X:S096354832200027X_inline19.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$p \\geqslant 1-\\varepsilon (G)$\n</span></span>\n</span>\n</span>.</p>","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s096354832200027x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let
$G=(V,E)$
be a countable graph. The Bunkbed graph of
$G$
is the product graph
$G \times K_2$
, which has vertex set
$V\times \{0,1\}$
with “horizontal” edges inherited from
$G$
and additional “vertical” edges connecting
$(w,0)$
and
$(w,1)$
for each
$w \in V$
. Kasteleyn’s Bunkbed conjecture states that for each
$u,v \in V$
and
$p\in [0,1]$
, the vertex
$(u,0)$
is at least as likely to be connected to
$(v,0)$
as to
$(v,1)$
under Bernoulli-
$p$
bond percolation on the bunkbed graph. We prove that the conjecture holds in the
$p \uparrow 1$
limit in the sense that for each finite graph
$G$
there exists
$\varepsilon (G)\gt 0$
such that the bunkbed conjecture holds for
$p \geqslant 1-\varepsilon (G)$
.