Spread-out limit of the critical points for lattice trees and lattice animals in dimensions

Noe Kawamoto, Akira Sakai
{"title":"Spread-out limit of the critical points for lattice trees and lattice animals in dimensions","authors":"Noe Kawamoto, Akira Sakai","doi":"10.1017/s096354832300038x","DOIUrl":null,"url":null,"abstract":"A spread-out lattice animal is a finite connected set of edges in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300038X_inline2.png\" /> <jats:tex-math>$\\{\\{x,y\\}\\subset \\mathbb{Z}^d\\;:\\;0\\lt \\|x-y\\|\\le L\\}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. A lattice tree is a lattice animal with no loops. The best estimate on the critical point <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300038X_inline3.png\" /> <jats:tex-math>$p_{\\textrm{c}}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> so far was achieved by Penrose (<jats:italic>J. Stat. Phys.</jats:italic> 77, 3–15, 1994) : <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300038X_inline4.png\" /> <jats:tex-math>$p_{\\textrm{c}}=1/e+O(L^{-2d/7}\\log L)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> for both models for all <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300038X_inline5.png\" /> <jats:tex-math>$d\\ge 1$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In this paper, we show that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300038X_inline6.png\" /> <jats:tex-math>$p_{\\textrm{c}}=1/e+CL^{-d}+O(L^{-d-1})$</jats:tex-math> </jats:alternatives> </jats:inline-formula> for all <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300038X_inline7.png\" /> <jats:tex-math>$d\\gt 8$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where the model-dependent constant <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300038X_inline8.png\" /> <jats:tex-math>$C$</jats:tex-math> </jats:alternatives> </jats:inline-formula> has the random-walk representation <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" position=\"float\" xlink:href=\"S096354832300038X_eqnU1.png\" /> <jats:tex-math>\\begin{align*} C_{\\textrm{LT}}=\\sum _{n=2}^\\infty \\frac{n+1}{2e}U^{*n}(o),&amp;&amp; C_{\\textrm{LA}}=C_{\\textrm{LT}}-\\frac 1{2e^2}\\sum _{n=3}^\\infty U^{*n}(o), \\end{align*}</jats:tex-math> </jats:alternatives> </jats:disp-formula>where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300038X_inline9.png\" /> <jats:tex-math>$U^{*n}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300038X_inline10.png\" /> <jats:tex-math>$n$</jats:tex-math> </jats:alternatives> </jats:inline-formula>-fold convolution of the uniform distribution on the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300038X_inline11.png\" /> <jats:tex-math>$d$</jats:tex-math> </jats:alternatives> </jats:inline-formula>-dimensional ball <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300038X_inline12.png\" /> <jats:tex-math>$\\{x\\in{\\mathbb R}^d\\;: \\|x\\|\\le 1\\}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The proof is based on a novel use of the lace expansion for the 2-point function and detailed analysis of the 1-point function at a certain value of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300038X_inline13.png\" /> <jats:tex-math>$p$</jats:tex-math> </jats:alternatives> </jats:inline-formula> that is designed to make the analysis extremely simple.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s096354832300038x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A spread-out lattice animal is a finite connected set of edges in $\{\{x,y\}\subset \mathbb{Z}^d\;:\;0\lt \|x-y\|\le L\}$ . A lattice tree is a lattice animal with no loops. The best estimate on the critical point $p_{\textrm{c}}$ so far was achieved by Penrose (J. Stat. Phys. 77, 3–15, 1994) : $p_{\textrm{c}}=1/e+O(L^{-2d/7}\log L)$ for both models for all $d\ge 1$ . In this paper, we show that $p_{\textrm{c}}=1/e+CL^{-d}+O(L^{-d-1})$ for all $d\gt 8$ , where the model-dependent constant $C$ has the random-walk representation \begin{align*} C_{\textrm{LT}}=\sum _{n=2}^\infty \frac{n+1}{2e}U^{*n}(o),&& C_{\textrm{LA}}=C_{\textrm{LT}}-\frac 1{2e^2}\sum _{n=3}^\infty U^{*n}(o), \end{align*} where $U^{*n}$ is the $n$ -fold convolution of the uniform distribution on the $d$ -dimensional ball $\{x\in{\mathbb R}^d\;: \|x\|\le 1\}$ . The proof is based on a novel use of the lace expansion for the 2-point function and detailed analysis of the 1-point function at a certain value of $p$ that is designed to make the analysis extremely simple.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
点阵树和点阵动物在维数上临界点的展开极限
展开的格子动物是$\{\{x,y\}\subset \mathbb{Z}^d\;:\;0\lt \|x-y\|\le L\}$中有限连接边的集合。格子树是一种没有循环的格子动物。迄今为止,Penrose (J. Stat. Phys. 77,3 - 15,1994)对临界点$p_{\textrm{c}}$的最佳估计是:$p_{\textrm{c}}=1/e+O(L^{-2d/7}\log L)$对于所有$d\ge 1$的两个模型。在本文中,我们证明了$p_{\textrm{c}}=1/e+CL^{-d}+O(L^{-d-1})$对于所有$d\gt 8$,其中模型相关常数$C$具有随机游走表示\begin{align*} C_{\textrm{LT}}=\sum _{n=2}^\infty \frac{n+1}{2e}U^{*n}(o),&& C_{\textrm{LA}}=C_{\textrm{LT}}-\frac 1{2e^2}\sum _{n=3}^\infty U^{*n}(o), \end{align*},其中$U^{*n}$是$d$维球$\{x\in{\mathbb R}^d\;: \|x\|\le 1\}$上均匀分布的$n$ -fold卷积。该证明基于对2点函数的lace展开的新颖使用和对1点函数在一定值$p$处的详细分析,旨在使分析变得极其简单。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new formula for the determinant and bounds on its tensor and Waring ranks On the Ramsey numbers of daisies I On the Ramsey numbers of daisies II List packing number of bounded degree graphs Counting spanning subgraphs in dense hypergraphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1