Predicting Equatorial Ionospheric Convective Instability Using Machine Learning

IF 3.7 2区 地球科学 Space Weather Pub Date : 2023-12-06 DOI:10.1029/2023sw003505
D. Garcia, E. L. Rojas, D. L. Hysell
{"title":"Predicting Equatorial Ionospheric Convective Instability Using Machine Learning","authors":"D. Garcia, E. L. Rojas, D. L. Hysell","doi":"10.1029/2023sw003505","DOIUrl":null,"url":null,"abstract":"The numerical forecast methods used to predict ionospheric convective plasma instabilities associated with Equatorial Spread-<i>F</i> (ESF) have limited accuracy and are often computationally expensive. We test whether it is possible to bypass first-principle numeric simulations and forecast irregularities using machine learning models. The data are obtained from the incoherent scatter radar at the Jicamarca Radio Observatory located in Lima, Peru. Our models map vertical plasma drifts, time, and solar activity to the occurrence and location of clusters of echoes telltale of ionospheric irregularities. Our results show that these models are capable of identifying the predictive power of the tested inputs, obtaining accuracies around 75%.","PeriodicalId":22181,"journal":{"name":"Space Weather","volume":"10 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Weather","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023sw003505","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The numerical forecast methods used to predict ionospheric convective plasma instabilities associated with Equatorial Spread-F (ESF) have limited accuracy and are often computationally expensive. We test whether it is possible to bypass first-principle numeric simulations and forecast irregularities using machine learning models. The data are obtained from the incoherent scatter radar at the Jicamarca Radio Observatory located in Lima, Peru. Our models map vertical plasma drifts, time, and solar activity to the occurrence and location of clusters of echoes telltale of ionospheric irregularities. Our results show that these models are capable of identifying the predictive power of the tested inputs, obtaining accuracies around 75%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习预测赤道电离层对流不稳定性
用于预测电离层对流等离子体不稳定性与赤道扩散f (ESF)相关的数值预报方法精度有限,而且通常计算成本高。我们测试是否有可能绕过第一性原理数值模拟,并使用机器学习模型预测不规则性。数据来自秘鲁利马Jicamarca射电天文台的非相干散射雷达。我们的模型将垂直等离子体漂移、时间和太阳活动映射到表明电离层不规则的回声簇的发生和位置。我们的结果表明,这些模型能够识别测试输入的预测能力,获得75%左右的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
29.70%
发文量
166
期刊最新文献
Quantification of Representation Error in the Neutral Winds and Ion Drifts Using Data Assimilation A Novel Ionospheric Inversion Model: PINN-SAMI3 (Physics Informed Neural Network Based on SAMI3) Nowcasting Solar EUV Irradiance With Photospheric Magnetic Fields and the Mg II Index Calculating the High-Latitude Ionospheric Electrodynamics Using a Machine Learning-Based Field-Aligned Current Model Effects of Forbush Decreases on the Global Electric Circuit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1