A Novel Ionospheric Inversion Model: PINN-SAMI3 (Physics Informed Neural Network Based on SAMI3)

IF 3.7 2区 地球科学 Space Weather Pub Date : 2024-04-14 DOI:10.1029/2023sw003823
Jiayu Ma, Haiyang Fu, J. D. Huba, Yaqiu Jin
{"title":"A Novel Ionospheric Inversion Model: PINN-SAMI3 (Physics Informed Neural Network Based on SAMI3)","authors":"Jiayu Ma, Haiyang Fu, J. D. Huba, Yaqiu Jin","doi":"10.1029/2023sw003823","DOIUrl":null,"url":null,"abstract":"Purely data-driven ionospheric modeling fails to adequately obey fundamental physical laws. To overcome this shortcoming, we propose a novel ionospheric inversion model, Physics-Informed Neural Network based on fully physical models SAMI3 (PINN-SAMI3). The model incorporates the governing equations of the ionospheric physical model SAMI3 into the neural network to reconstruct the temporal-spatial distribution of ionospheric plasma parameters. The objective of this study is to investigate the feasibility of integrating physical models with machine learning for ionospheric modeling. The PINN-SAMI3 framework enforces physical laws through the multiple ion species of continuity, momentum, temperature equations in the magnetic dipole coordinate system. The simulation results show that if sparse ion densities are used as training data, it is possible to retrieve ionospheric electron densities, ion velocities and ion temperatures, respectively. The optimal physical constraints have been also investigated for different inversion quantities. Furthermore, the impact of incorporating <b>E</b> × <b>B</b> velocity terms on inversion results during the periods of ionospheric calm and geomagnetic storm is analyzed. The PINN-SAMI3 achieves good inversion results even using sparse data in comparison to the traditional artificial neural networks (ANN). The framework will contribute to advance the future space weather prediction capability with artificial intelligence (AI).","PeriodicalId":22181,"journal":{"name":"Space Weather","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Weather","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023sw003823","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purely data-driven ionospheric modeling fails to adequately obey fundamental physical laws. To overcome this shortcoming, we propose a novel ionospheric inversion model, Physics-Informed Neural Network based on fully physical models SAMI3 (PINN-SAMI3). The model incorporates the governing equations of the ionospheric physical model SAMI3 into the neural network to reconstruct the temporal-spatial distribution of ionospheric plasma parameters. The objective of this study is to investigate the feasibility of integrating physical models with machine learning for ionospheric modeling. The PINN-SAMI3 framework enforces physical laws through the multiple ion species of continuity, momentum, temperature equations in the magnetic dipole coordinate system. The simulation results show that if sparse ion densities are used as training data, it is possible to retrieve ionospheric electron densities, ion velocities and ion temperatures, respectively. The optimal physical constraints have been also investigated for different inversion quantities. Furthermore, the impact of incorporating E × B velocity terms on inversion results during the periods of ionospheric calm and geomagnetic storm is analyzed. The PINN-SAMI3 achieves good inversion results even using sparse data in comparison to the traditional artificial neural networks (ANN). The framework will contribute to advance the future space weather prediction capability with artificial intelligence (AI).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新型电离层反演模型:PINN-SAMI3(基于 SAMI3 的物理信息神经网络)
纯粹由数据驱动的电离层建模无法充分遵循基本物理定律。为了克服这一缺陷,我们提出了一种新的电离层反演模型,即基于完全物理模型 SAMI3 的物理信息神经网络(PINN-SAMI3)。该模型将电离层物理模型 SAMI3 的支配方程纳入神经网络,以重建电离层等离子体参数的时空分布。本研究的目的是调查将物理模型与机器学习相结合用于电离层建模的可行性。PINN-SAMI3 框架通过磁偶极坐标系中的多离子连续性、动量、温度方程来执行物理定律。模拟结果表明,如果使用稀疏离子密度作为训练数据,就有可能分别检索出电离层电子密度、离子速度和离子温度。还研究了不同反演量的最佳物理约束条件。此外,还分析了在电离层平静期和地磁风暴期加入 E × B 速度项对反演结果的影响。与传统的人工神经网络(ANN)相比,即使使用稀疏数据,PINN-SAMI3 也能获得良好的反演结果。该框架将有助于利用人工智能(AI)提高未来空间天气预报能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
29.70%
发文量
166
期刊最新文献
Quantification of Representation Error in the Neutral Winds and Ion Drifts Using Data Assimilation A Novel Ionospheric Inversion Model: PINN-SAMI3 (Physics Informed Neural Network Based on SAMI3) Nowcasting Solar EUV Irradiance With Photospheric Magnetic Fields and the Mg II Index Calculating the High-Latitude Ionospheric Electrodynamics Using a Machine Learning-Based Field-Aligned Current Model Effects of Forbush Decreases on the Global Electric Circuit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1