Taming the beast: a revised classification of Cortinariaceae based on genomic data

IF 24.5 1区 生物学 Q1 MYCOLOGY Fungal Diversity Pub Date : 2022-02-23 DOI:10.1007/s13225-022-00499-9
Kare Liimatainen, Jan T. Kim, Lisa Pokorny, Paul M. Kirk, Bryn Dentinger, Tuula Niskanen
{"title":"Taming the beast: a revised classification of Cortinariaceae based on genomic data","authors":"Kare Liimatainen, Jan T. Kim, Lisa Pokorny, Paul M. Kirk, Bryn Dentinger, Tuula Niskanen","doi":"10.1007/s13225-022-00499-9","DOIUrl":null,"url":null,"abstract":"<p>Family <i>Cortinariaceae</i> currently includes only one genus, <i>Cortinarius</i>, which is the largest <i>Agaricales</i> genus, with thousands of species worldwide. The species are important ectomycorrhizal fungi and form associations with many vascular plant genera from tropicals to arctic regions. Genus <i>Cortinarius</i> contains a lot of morphological variation, and its complexity has led many taxonomists to specialize in particular on infrageneric groups. The previous attempts to divide <i>Cortinarius</i> have been shown to be unnatural and the phylogenetic studies done to date have not been able to resolve the higher-level classification of the group above section level. Genomic approaches have revolutionized our view on fungal relationships and provide a way to tackle difficult groups. We used both targeted capture sequencing and shallow whole genome sequencing to produce data and to perform phylogenomic analyses of 75 single-copy genes from 19 species. In addition, a wider 5-locus analysis of 245 species, from the Northern and Southern Hemispheres, was also done. Based on our results, a classification of the family <i>Cortinariaceae</i> into ten genera—<i>Cortinarius, Phlegmacium, Thaxterogaster, Calonarius, Aureonarius, Cystinarius, Volvanarius, Hygronarius, Mystinarius,</i> and <i>Austrocortinarius</i>—is proposed. Seven genera, 10 subgenera, and four sections are described as new to science and five subgenera are introduced as new combinations in a new rank. In addition, 41 section names and 514 species names are combined in new genera and four lecto- and epitypes designated. The position of <i>Stephanopus</i> in suborder <i>Agaricineae</i> remains to be studied. Targeted capture sequencing is used for the first time in fungal taxonomy in Basidiomycetes. It provides a cost-efficient way to produce -omics data in species-rich groups. The -omics data was produced from fungarium specimens up to 21 years old, demonstrating the value of museum specimens in the study of the fungal tree of life. This study is the first family revision in Agaricales based on genomics data and hopefully many others will soon follow.</p>","PeriodicalId":12471,"journal":{"name":"Fungal Diversity","volume":"15 1","pages":""},"PeriodicalIF":24.5000,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Diversity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13225-022-00499-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 19

Abstract

Family Cortinariaceae currently includes only one genus, Cortinarius, which is the largest Agaricales genus, with thousands of species worldwide. The species are important ectomycorrhizal fungi and form associations with many vascular plant genera from tropicals to arctic regions. Genus Cortinarius contains a lot of morphological variation, and its complexity has led many taxonomists to specialize in particular on infrageneric groups. The previous attempts to divide Cortinarius have been shown to be unnatural and the phylogenetic studies done to date have not been able to resolve the higher-level classification of the group above section level. Genomic approaches have revolutionized our view on fungal relationships and provide a way to tackle difficult groups. We used both targeted capture sequencing and shallow whole genome sequencing to produce data and to perform phylogenomic analyses of 75 single-copy genes from 19 species. In addition, a wider 5-locus analysis of 245 species, from the Northern and Southern Hemispheres, was also done. Based on our results, a classification of the family Cortinariaceae into ten genera—Cortinarius, Phlegmacium, Thaxterogaster, Calonarius, Aureonarius, Cystinarius, Volvanarius, Hygronarius, Mystinarius, and Austrocortinarius—is proposed. Seven genera, 10 subgenera, and four sections are described as new to science and five subgenera are introduced as new combinations in a new rank. In addition, 41 section names and 514 species names are combined in new genera and four lecto- and epitypes designated. The position of Stephanopus in suborder Agaricineae remains to be studied. Targeted capture sequencing is used for the first time in fungal taxonomy in Basidiomycetes. It provides a cost-efficient way to produce -omics data in species-rich groups. The -omics data was produced from fungarium specimens up to 21 years old, demonstrating the value of museum specimens in the study of the fungal tree of life. This study is the first family revision in Agaricales based on genomics data and hopefully many others will soon follow.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
驯服猛兽:基于基因组数据修订的天竺葵科分类
Cortinariaceae家族目前只包括一个属,Cortinarius,这是最大的Agaricales属,全世界有数千种。该物种是重要的外生菌根真菌,与热带到北极地区的许多维管植物属形成关联。海棠属包含了许多形态变异,其复杂性使得许多分类学家专门研究其下属群。以往的划分尝试已被证明是不自然的,迄今为止所做的系统发育研究也未能解决在剖面水平以上的更高层次的分类问题。基因组方法彻底改变了我们对真菌关系的看法,并提供了一种解决困难群体的方法。我们使用靶向捕获测序和浅全基因组测序来获取数据,并对来自19个物种的75个单拷贝基因进行系统基因组分析。此外,还对来自北半球和南半球的245个物种进行了更广泛的5位点分析。在此基础上,提出了cortinarius、Phlegmacium、Thaxterogaster、Calonarius、Aureonarius、Cystinarius、Volvanarius、Hygronarius、Mystinarius和austrocortinarius等10个属的分类。7个属,10个亚属和4个部分被描述为科学上的新事物,5个亚属被作为新组合在一个新的等级中引入。此外,在新属中合并了41个节名和514个种名,并指定了4个集型和表型。Stephanopus在Agaricineae亚目中的位置还有待进一步研究。目标捕获测序首次用于担子菌的真菌分类。它为在物种丰富的群体中产生组学数据提供了一种经济有效的方法。组学数据来自21年前的真菌标本,证明了博物馆标本在真菌生命树研究中的价值。这项研究是基于基因组学数据的第一个Agaricales家族修订,希望其他许多研究很快会跟进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fungal Diversity
Fungal Diversity 生物-真菌学
CiteScore
44.80
自引率
9.90%
发文量
17
审稿时长
6 months
期刊介绍: Fungal Diversity, the official journal of the Kunming Institute of Botany of the Chinese Academy of Sciences, is an international, peer-reviewed journal covering all aspects of mycology. It prioritizes papers on biodiversity, systematic, and molecular phylogeny. While it welcomes novel research and review articles, authors aiming to publish checklists are advised to seek regional journals, and the introduction of new species and genera should generally be supported by molecular data. Published articles undergo peer review and are accessible online first with a permanent DOI, making them citable as the official Version of Record according to NISO RP-8-2008 standards. Any necessary corrections after online publication require the publication of an Erratum.
期刊最新文献
Microsporidia and invertebrate hosts: genome-informed taxonomy surrounding a new lineage of crayfish-infecting Nosema spp. (Nosematida) Fungal numbers: global needs for a realistic assessment Classes and phyla of the kingdom Fungi Taxonomic revision of Marasmius Fr. and Marasmiaceae Roze ex Kühner based on multigene phylogenetics and morphological evidence Current insights into palm fungi with emphasis on taxonomy and phylogeny
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1