Mashanov, Vladimir, Whaley, Lauren, Davis, Kenneth, Heinzeller, Thomas, Machado, Denis Jacob, Reid, Robert W., Kofsky, Janice, Janies, Daniel
{"title":"A subterminal growth zone at arm tip likely underlies life-long indeterminate growth in brittle stars","authors":"Mashanov, Vladimir, Whaley, Lauren, Davis, Kenneth, Heinzeller, Thomas, Machado, Denis Jacob, Reid, Robert W., Kofsky, Janice, Janies, Daniel","doi":"10.1186/s12983-022-00461-0","DOIUrl":null,"url":null,"abstract":"Echinoderms are a phylum of marine invertebrates with close phylogenetic relationships to chordates. Many members of the phylum Echinodermata are capable of extensive post-traumatic regeneration and life-long indeterminate growth. Different from regeneration, the life-long elongation of the main body axis in adult echinoderms has received little attention. The anatomical location and the nature of the dividing progenitor cells contributing to adults’ growth is unknown. We show that the proliferating cells that drive the life-long growth of adult brittle star arms are mostly localized to the subterminal (second from the tip) arm segment. Each of the major anatomical structures contains dividing progenitors. These structures include: the radial nerve, water-vascular canal, and arm coelomic wall. Some of those proliferating progenitor cells are capable of multiple rounds of cell division. Within the nervous system, the progenitor cells were identified as a subset of radial glial cells that do not express Brn1/2/4, a transcription factor with a conserved role in the neuronal fate specification. In addition to characterizing the growth zone and the nature of the precursor cells, we provide a description of the microanatomy of the four distal-most arm segments contrasting the distal with the proximal segments, which are more mature. The growth of the adult brittle star arms occurs via proliferation of progenitor cells in the distal segments, which are most abundant in the second segment from the tip. At least some of the progenitors are capable of multiple rounds of cell division. Within the nervous system the dividing cells were identified as Brn1/2/4-negative radial glial cells.","PeriodicalId":55142,"journal":{"name":"Frontiers in Zoology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12983-022-00461-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Echinoderms are a phylum of marine invertebrates with close phylogenetic relationships to chordates. Many members of the phylum Echinodermata are capable of extensive post-traumatic regeneration and life-long indeterminate growth. Different from regeneration, the life-long elongation of the main body axis in adult echinoderms has received little attention. The anatomical location and the nature of the dividing progenitor cells contributing to adults’ growth is unknown. We show that the proliferating cells that drive the life-long growth of adult brittle star arms are mostly localized to the subterminal (second from the tip) arm segment. Each of the major anatomical structures contains dividing progenitors. These structures include: the radial nerve, water-vascular canal, and arm coelomic wall. Some of those proliferating progenitor cells are capable of multiple rounds of cell division. Within the nervous system, the progenitor cells were identified as a subset of radial glial cells that do not express Brn1/2/4, a transcription factor with a conserved role in the neuronal fate specification. In addition to characterizing the growth zone and the nature of the precursor cells, we provide a description of the microanatomy of the four distal-most arm segments contrasting the distal with the proximal segments, which are more mature. The growth of the adult brittle star arms occurs via proliferation of progenitor cells in the distal segments, which are most abundant in the second segment from the tip. At least some of the progenitors are capable of multiple rounds of cell division. Within the nervous system the dividing cells were identified as Brn1/2/4-negative radial glial cells.
期刊介绍:
Frontiers in Zoology is an open access, peer-reviewed online journal publishing high quality research articles and reviews on all aspects of animal life.
As a biological discipline, zoology has one of the longest histories. Today it occasionally appears as though, due to the rapid expansion of life sciences, zoology has been replaced by more or less independent sub-disciplines amongst which exchange is often sparse. However, the recent advance of molecular methodology into "classical" fields of biology, and the development of theories that can explain phenomena on different levels of organisation, has led to a re-integration of zoological disciplines promoting a broader than usual approach to zoological questions. Zoology has re-emerged as an integrative discipline encompassing the most diverse aspects of animal life, from the level of the gene to the level of the ecosystem.
Frontiers in Zoology is the first open access journal focusing on zoology as a whole. It aims to represent and re-unite the various disciplines that look at animal life from different perspectives and at providing the basis for a comprehensive understanding of zoological phenomena on all levels of analysis. Frontiers in Zoology provides a unique opportunity to publish high quality research and reviews on zoological issues that will be internationally accessible to any reader at no cost.
The journal was initiated and is supported by the Deutsche Zoologische Gesellschaft, one of the largest national zoological societies with more than a century-long tradition in promoting high-level zoological research.