Attacking DoH and ECH: Does Server Name Encryption Protect Users’ Privacy?

IF 3.9 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS ACM Transactions on Internet Technology Pub Date : 2023-02-23 DOI:https://dl.acm.org/doi/10.1145/3570726
Martino Trevisan, Francesca Soro, Marco Mellia, Idilio Drago, Ricardo Morla
{"title":"Attacking DoH and ECH: Does Server Name Encryption Protect Users’ Privacy?","authors":"Martino Trevisan, Francesca Soro, Marco Mellia, Idilio Drago, Ricardo Morla","doi":"https://dl.acm.org/doi/10.1145/3570726","DOIUrl":null,"url":null,"abstract":"<p>Privacy on the Internet has become a priority, and several efforts have been devoted to limit the leakage of personal information. Domain names, both in the TLS Client Hello and DNS traffic, are among the last pieces of information still visible to an observer in the network. The Encrypted Client Hello extension for TLS, DNS over HTTPS or over QUIC protocols aim to further increase network confidentiality by encrypting the domain names of the visited servers.</p><p>In this article, we check whether an attacker able to passively observe the traffic of users could still recover the domain name of websites they visit even if names are encrypted. By relying on large-scale network traces, we show that simplistic features and off-the-shelf machine learning models are sufficient to achieve surprisingly high precision and recall when recovering encrypted domain names. We consider three attack scenarios, i.e., recovering the per-flow name, rebuilding the set of visited websites by a user, and checking which users visit a given target website. We next evaluate the efficacy of padding-based mitigation, finding that all three attacks are still effective, despite resources wasted with padding. We conclude that current proposals for domain encryption may produce a false sense of privacy, and more robust techniques should be envisioned to offer protection to end users.</p>","PeriodicalId":50911,"journal":{"name":"ACM Transactions on Internet Technology","volume":"31 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Internet Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3570726","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Privacy on the Internet has become a priority, and several efforts have been devoted to limit the leakage of personal information. Domain names, both in the TLS Client Hello and DNS traffic, are among the last pieces of information still visible to an observer in the network. The Encrypted Client Hello extension for TLS, DNS over HTTPS or over QUIC protocols aim to further increase network confidentiality by encrypting the domain names of the visited servers.

In this article, we check whether an attacker able to passively observe the traffic of users could still recover the domain name of websites they visit even if names are encrypted. By relying on large-scale network traces, we show that simplistic features and off-the-shelf machine learning models are sufficient to achieve surprisingly high precision and recall when recovering encrypted domain names. We consider three attack scenarios, i.e., recovering the per-flow name, rebuilding the set of visited websites by a user, and checking which users visit a given target website. We next evaluate the efficacy of padding-based mitigation, finding that all three attacks are still effective, despite resources wasted with padding. We conclude that current proposals for domain encryption may produce a false sense of privacy, and more robust techniques should be envisioned to offer protection to end users.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
攻击DoH和ECH:服务器名加密能保护用户隐私吗?
互联网上的隐私已经成为一个优先考虑的问题,人们已经做出了一些努力来限制个人信息的泄露。在TLS客户端Hello和DNS流量中,域名都是网络中观察者仍然可见的最后信息之一。通过HTTPS或QUIC协议的TLS、DNS的加密客户端Hello扩展旨在通过加密访问服务器的域名进一步提高网络机密性。在本文中,我们检查攻击者是否能够被动地观察用户的流量,即使名称被加密,仍然可以恢复他们访问的网站的域名。通过依赖大规模的网络痕迹,我们表明,在恢复加密域名时,简单的特征和现成的机器学习模型足以达到惊人的高精度和召回率。我们考虑了三种攻击场景,即恢复每个流名称,重建用户访问过的网站集,以及检查哪些用户访问了给定的目标网站。接下来,我们评估了基于填充的缓解效果,发现尽管填充浪费了资源,但所有三种攻击仍然有效。我们的结论是,目前的域名加密建议可能会产生一种错误的隐私感,应该设想更强大的技术来为最终用户提供保护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Transactions on Internet Technology
ACM Transactions on Internet Technology 工程技术-计算机:软件工程
CiteScore
10.30
自引率
1.90%
发文量
137
审稿时长
>12 weeks
期刊介绍: ACM Transactions on Internet Technology (TOIT) brings together many computing disciplines including computer software engineering, computer programming languages, middleware, database management, security, knowledge discovery and data mining, networking and distributed systems, communications, performance and scalability etc. TOIT will cover the results and roles of the individual disciplines and the relationshipsamong them.
期刊最新文献
Interpersonal Communication Interconnection in Media Convergence Metaverse Using Reinforcement Learning and Error Models for Drone Precision Landing Towards Human-AI Teaming to Mitigate Alert Fatigue in Security Operations Centres RESP: A Recursive Clustering Approach for Edge Server Placement in Mobile Edge Computing OTI-IoT: A Blockchain-based Operational Threat Intelligence Framework for Multi-vector DDoS Attacks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1