{"title":"Interpersonal Communication Interconnection in Media Convergence Metaverse","authors":"Xin Wang, Jianhui Lv, Achyut Shankar, Carsten Maple, Keqin Li, Qing Li","doi":"10.1145/3670998","DOIUrl":null,"url":null,"abstract":"<p>The metaverse aims to provide immersive virtual worlds connecting with the physical world. To enable real-time interpersonal communications between users across the globe, the metaverse places high demands on network performance, including low latency, high bandwidth, and fast network speeds. This paper proposes a novel Media Convergence Metaverse Network (MCMN) framework to address these challenges. Specifically, the META controller serves as MCMN's logically centralized control plane, responsible for holistic orchestration across edge sites and end-to-end path computation between metaverse users. We develop a model-free deep reinforcement learning-based metaverse traffic optimization algorithm that learns to route flows while satisfying the Quality of Service (QoS) boundaries. The network slicing engine leverages artificial intelligence and machine learning to create isolated, customized virtual networks tailored for metaverse traffic dynamics on demand. It employs unsupervised and reinforcement learning techniques using network telemetry from the META controller to understand application traffic patterns and train cognitive slicer agents to make quality of service -aware decisions accordingly. Optimized delivery of diverse concurrent media types necessitates routing intelligence to meet distinct requirements while mitigating clashes over a shared infrastructure. Media-aware routing enhances traditional shortest-path approaches by combining topological metrics with workflow sensitivities. We realize an edge-assisted rendering fabric to offload complex processing from bandwidth-constrained endpoints while retaining visual realism. Extensive simulations demonstrate MCMN's superior performance compared to conventional networking paradigms. MCMN shows great promise to enable seamless interconnectivity and ultra-high fidelity communications to unlock the true potential of the metaverse.</p>","PeriodicalId":50911,"journal":{"name":"ACM Transactions on Internet Technology","volume":"218 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Internet Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3670998","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The metaverse aims to provide immersive virtual worlds connecting with the physical world. To enable real-time interpersonal communications between users across the globe, the metaverse places high demands on network performance, including low latency, high bandwidth, and fast network speeds. This paper proposes a novel Media Convergence Metaverse Network (MCMN) framework to address these challenges. Specifically, the META controller serves as MCMN's logically centralized control plane, responsible for holistic orchestration across edge sites and end-to-end path computation between metaverse users. We develop a model-free deep reinforcement learning-based metaverse traffic optimization algorithm that learns to route flows while satisfying the Quality of Service (QoS) boundaries. The network slicing engine leverages artificial intelligence and machine learning to create isolated, customized virtual networks tailored for metaverse traffic dynamics on demand. It employs unsupervised and reinforcement learning techniques using network telemetry from the META controller to understand application traffic patterns and train cognitive slicer agents to make quality of service -aware decisions accordingly. Optimized delivery of diverse concurrent media types necessitates routing intelligence to meet distinct requirements while mitigating clashes over a shared infrastructure. Media-aware routing enhances traditional shortest-path approaches by combining topological metrics with workflow sensitivities. We realize an edge-assisted rendering fabric to offload complex processing from bandwidth-constrained endpoints while retaining visual realism. Extensive simulations demonstrate MCMN's superior performance compared to conventional networking paradigms. MCMN shows great promise to enable seamless interconnectivity and ultra-high fidelity communications to unlock the true potential of the metaverse.
期刊介绍:
ACM Transactions on Internet Technology (TOIT) brings together many computing disciplines including computer software engineering, computer programming languages, middleware, database management, security, knowledge discovery and data mining, networking and distributed systems, communications, performance and scalability etc. TOIT will cover the results and roles of the individual disciplines and the relationshipsamong them.