{"title":"Waveguide-based Raman enhancement strategies","authors":"Junyi Zhao, Xiumian Cao, Weiqing Xu, Shuping Xu","doi":"10.1002/jrs.6628","DOIUrl":null,"url":null,"abstract":"<p>Waveguide-enhanced Raman scattering (WERS) is a powerful branch of enhanced Raman technologies that has gained significant progress in recent years because of its advantages, such as reproducibility and robustness. As a complementary tool to surface-enhanced Raman spectroscopy (SERS), WERS provides a powerful solution for reproducible quantification of analytes. According to different Raman enhancement mechanisms, five major WERS implementation strategies, namely, (1) single-mode dielectric waveguide, (2) liquid core waveguide, (3) metal cladding waveguide, (4) resonance mirror waveguide, and (5) double metal cladding waveguide, are classified and described in detail in this review. The flexibility of WERS structures makes them easy to be integrated with 2D devices to obtain a complete on-chip detection scheme, allowing the WERS chip to combine excitation, detection, and data analysis in integrated chips, providing a powerful prospect for real-time and on-site analysis of target samples. This article highlights the principles, implementations, and application scenarios of WERS techniques and evaluates their advantages and limitations, respectively. Finally, the strengths and weaknesses of WERS techniques are summarized, and promising future applications are proposed. This review provides a panoramic view for researchers interested in waveguide-enhanced Raman technology.</p>","PeriodicalId":16926,"journal":{"name":"Journal of Raman Spectroscopy","volume":"55 3","pages":"355-376"},"PeriodicalIF":2.4000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Raman Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jrs.6628","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
Waveguide-enhanced Raman scattering (WERS) is a powerful branch of enhanced Raman technologies that has gained significant progress in recent years because of its advantages, such as reproducibility and robustness. As a complementary tool to surface-enhanced Raman spectroscopy (SERS), WERS provides a powerful solution for reproducible quantification of analytes. According to different Raman enhancement mechanisms, five major WERS implementation strategies, namely, (1) single-mode dielectric waveguide, (2) liquid core waveguide, (3) metal cladding waveguide, (4) resonance mirror waveguide, and (5) double metal cladding waveguide, are classified and described in detail in this review. The flexibility of WERS structures makes them easy to be integrated with 2D devices to obtain a complete on-chip detection scheme, allowing the WERS chip to combine excitation, detection, and data analysis in integrated chips, providing a powerful prospect for real-time and on-site analysis of target samples. This article highlights the principles, implementations, and application scenarios of WERS techniques and evaluates their advantages and limitations, respectively. Finally, the strengths and weaknesses of WERS techniques are summarized, and promising future applications are proposed. This review provides a panoramic view for researchers interested in waveguide-enhanced Raman technology.
期刊介绍:
The Journal of Raman Spectroscopy is an international journal dedicated to the publication of original research at the cutting edge of all areas of science and technology related to Raman spectroscopy. The journal seeks to be the central forum for documenting the evolution of the broadly-defined field of Raman spectroscopy that includes an increasing number of rapidly developing techniques and an ever-widening array of interdisciplinary applications.
Such topics include time-resolved, coherent and non-linear Raman spectroscopies, nanostructure-based surface-enhanced and tip-enhanced Raman spectroscopies of molecules, resonance Raman to investigate the structure-function relationships and dynamics of biological molecules, linear and nonlinear Raman imaging and microscopy, biomedical applications of Raman, theoretical formalism and advances in quantum computational methodology of all forms of Raman scattering, Raman spectroscopy in archaeology and art, advances in remote Raman sensing and industrial applications, and Raman optical activity of all classes of chiral molecules.