Automatic estimation of lipid content from in situ images of Arctic copepods using machine learning

IF 1.9 3区 环境科学与生态学 Q2 MARINE & FRESHWATER BIOLOGY Journal of Plankton Research Pub Date : 2023-12-01 DOI:10.1093/plankt/fbad048
Frédéric Maps, Piotr Pasza Storożenko, Jędrzej Świeżewski, Sakina-Dorothée Ayata
{"title":"Automatic estimation of lipid content from in situ images of Arctic copepods using machine learning","authors":"Frédéric Maps, Piotr Pasza Storożenko, Jędrzej Świeżewski, Sakina-Dorothée Ayata","doi":"10.1093/plankt/fbad048","DOIUrl":null,"url":null,"abstract":"In Arctic marine ecosystems, large planktonic copepods form a crucial hub of matter and energy. Their energy-rich lipid stores play a central role in marine trophic networks and the biological carbon pump. Since the past ~15 years, in situ imaging devices provide images whose resolution allows us to estimate an individual copepod’s lipid sac volume, and this reveals many ecological information inaccessible otherwise. One such device is the Lightframe On-sight Keyspecies Investigation. However, when done manually, weeks of work are needed by trained personnel to obtain such information for only a handful of sampled images. We removed this hurdle by training a machine learning algorithm (a convolutional neural network) to estimate the lipid content of individual Arctic copepods from the in situ images. This algorithm obtains such information at a speed (a few minutes) and a resolution (individuals, over half a meter on the vertical), allowing us to revisit historical datasets of in situ images to better understand the dynamics of lipid production and distribution and to develop efficient monitoring protocols at a moment when marine ecosystems are facing rapid upheavals and increasing threats.","PeriodicalId":16800,"journal":{"name":"Journal of Plankton Research","volume":"60 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plankton Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/plankt/fbad048","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In Arctic marine ecosystems, large planktonic copepods form a crucial hub of matter and energy. Their energy-rich lipid stores play a central role in marine trophic networks and the biological carbon pump. Since the past ~15 years, in situ imaging devices provide images whose resolution allows us to estimate an individual copepod’s lipid sac volume, and this reveals many ecological information inaccessible otherwise. One such device is the Lightframe On-sight Keyspecies Investigation. However, when done manually, weeks of work are needed by trained personnel to obtain such information for only a handful of sampled images. We removed this hurdle by training a machine learning algorithm (a convolutional neural network) to estimate the lipid content of individual Arctic copepods from the in situ images. This algorithm obtains such information at a speed (a few minutes) and a resolution (individuals, over half a meter on the vertical), allowing us to revisit historical datasets of in situ images to better understand the dynamics of lipid production and distribution and to develop efficient monitoring protocols at a moment when marine ecosystems are facing rapid upheavals and increasing threats.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习从北极桡足动物的原位图像中自动估计脂质含量
在北极海洋生态系统中,大型浮游桡足类动物是物质和能量的重要枢纽。它们富含能量的脂质储存在海洋营养网络和生物碳泵中起着核心作用。在过去的15年里,原位成像设备提供的图像的分辨率使我们能够估计单个桡足动物的脂囊体积,这揭示了许多否则无法获得的生态信息。其中一个装置是Lightframe On-sight关键物种调查。然而,当手工完成时,训练有素的人员需要数周的工作才能获得少量采样图像的信息。我们通过训练机器学习算法(卷积神经网络)来从原位图像中估计北极桡足类个体的脂质含量,从而消除了这一障碍。该算法以速度(几分钟)和分辨率(个体,垂直超过半米)获得这些信息,使我们能够重新访问原位图像的历史数据集,以更好地了解脂质产生和分布的动态,并在海洋生态系统面临快速动荡和日益增加的威胁时制定有效的监测方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Plankton Research
Journal of Plankton Research 生物-海洋学
CiteScore
3.50
自引率
9.50%
发文量
65
审稿时长
1 months
期刊介绍: Journal of Plankton Research publishes innovative papers that significantly advance the field of plankton research, and in particular, our understanding of plankton dynamics.
期刊最新文献
Assessing coastal zooplankton in the St. Lawrence estuary: spatio-temporal patterns of taxonomic and functional biodiversity. Conditions favoring phagotrophy can lead to larger cell sizes in some freshwater mixoplankton. Spatio-temporal variability of mesozooplankton distribution along the Canary Current Large Marine Ecosystem: a regional perspective. Comparison of WP-2 and MOCNESS plankton samplers for measuring zooplankton biomass in the Barents Sea ecosystem. Correction to: Phytoplankton stoichiometry along the salinity gradient under limited nutrient and light supply.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1